699.FAILURE MODE AND EFFECT ANALYSIS-BASED RISK ASSESSMENT OF A BRIDGE CRANE MAIN GIRDER
DOI:
https://doi.org/10.55302/MESJ25432111vljKeywords:
bridge cranes, main girder, FMEAAbstract
This paper presents an integrated approach for evaluating the condition and failure risks of the main girder in a bridge crane. The study uses numerical simulations performed in Ansys. The critical stress zones for various trolley positions and dynamically amplified loads are identified using numerical analyses. In the following phase, the results from the numerical analysis are used as input for the Failure Mode and Effect Analysis - FMEA method. Based on the generated FMEA, the data are further utilized to develop a MATLAB algorithm that integrates the FMEA parameters and provides an assessment of the structural condition and failure risks. The suggested method-ology enables an improved approach to crane inspection and maintenance planning.References
Ostrić, D. (2009): Dizalice, Univerzitet u Beogradu, Ma-šinski fakultet.
Јакимовска, К. (2021): Машини за цикличен транс-порт, Универзитет „Св. Кирил и Методиј“ во Скопје, Машински факултет – Скопје.
Институт за стандардизација на Република Македо-нија. (2015): МКС EN 13001-1: Кранови – Општ ди-зајн. – Дел 1: Општи принципи. ИСРМ
Hoffmann, K., Krenn, E., Stanker, G. (2004): Förder-technik: Maschinensätze, Fördermittel, Tragkonstruktio¬nen, Logistik (5th ed.), Vol. 2. Oldenbourg.
Hoffmann, K., Krenn, E., Stanker, G. (2012): Förder-technik 1: Bauelemente, Konstruktion, Berechnung. Vul¬kan-Verlag GmbH.
Seeßelberg, C. (2016): Kranbahnen: Bemessung und kon¬struktive Gestaltung nach Eurocode (5th ed.). DIN Media.
Dong, Q., Xu, G., & Ren, H. (2015): Risk assessment of remanufacturing arm structure for crane based on potential failure mode. Journal of Mechanical Science and Technol¬ogy, 29 (12), 5345–5357.
Omidvar, M., Nirumand, F. (2017): Risk assessment us-ing FMEA method and on the basis of MCDM, fuzzy logic and Grey theory: A case study of overhead cranes. Journal of¬Health & Safety at Work, 7 (1). http://jhsw.tums.ac.ir/article-1-5591-en.html
Masullo, M., Toma, R. A., Pascale, A., Maffei, L., Rug-giero, G. (2020, October): Effects of noise on overhead crane operators performances under mental fatigue, in a virtual reality crane simulator. In: INTER-NOISE and NOISE-CON Congress and Con¬ference Proceedings, Vol. 261, No. 4, pp. 2946–2954. Institute of Noise Control En¬gineering.
Sharma, K. D., Srivastava, S. (2018): Failure mode and effect analysis (FMEA) implementation: a literature re-view. Journal of Advance Research in Aeronautics and Space Science, 5 (1), 1–17.
Strohmandl, J., Tomek, M., Vargová, S., Čujan, Z. (2019): The use of the FMEA method for the evaluation of failures in crawler cranes. In: MATEC Web of Conferences. Vol. 263, p. 01004. EDP Sciences.
Kulka, J., Mantic, M., Fedorko, G., Molnar, V. (2020): Failure analysis concerning causes of wear for bridge crane rails and wheels. Engineering Failure Analysis, 110, 104441. https://doi.org/10.1016/j.engfailanal.2020.104441
Liu, H. C., Chen, X. Q., You, J. X., Li, Z. (2020): A new integrated approach for risk evaluation and classification with dynamic expert weights. IEEE Transactions on Reli¬ability, 70(1), 163–174.
Mohammadi, H., Fazli, Z., Kaleh, H., Azimi, H. R., Mo¬radi Hanifi, S., Shafiee, N. (2021): Risk analysis and re¬liability assess¬ment of overhead cranes using fault tree analysis integrated with Markov chain and fuzzy Bayesian net¬works. Mathematical Prob¬lems in Engineering, Vol. 2021, pp 1–17, 6530541. https://doi.org/10.1155/2021/6530541
Lingard, H., Cooke, T., Zelic, G., Harley, J. (2021): A qualitative analysis of crane safety incident causation in the Australian construction industry. Safety Science, 133, 105028. https://doi.org/10.1016/j.ssci.2020.105028
Li, A. (2024): Risk assessment of crane operation hazards using modified FMEA approach with Z-number and set pair analysis. Heliyon, 10(9), https://doi.org/10.1016/j.heliyon.2024.e28603
Li, A. (2024): Human error risk prioritization in crane op-erations based on CPT and ICWGT. PloS ONE, 19 (2), e0297120. https://doi.org/10.1371/journal.pone.0297120
Faisal, R., Firda, H., Yassyir, M., Ice, T., Saifullah, A. (2025): Crawler crane failure cause analysis using fish-bone diagram, Pareto principle, and failure mode effect analysis: A comprehensive approach to minimize downtime and improve operational reliability. Journal of Inno¬vation and Technology, 4, 1–11. https://creativecommons.org/licenses/by/4.0/
Gašić, V. (2017): Osnove metalnih konstrukcija u mašino¬gradnji, Univerzitet u Beogradu, Mašinski fakultet.
Lee, H.-H. (2021): Finite Element Simulations with ANSYS Workbench 2021: Theory, applications, case studies. SDC Publications. ISBN-10: 1630574562
Kochmann, D. M. (2025): Introduction to Finite Element Analysis. ETH Zurich.
Давчев, Т. (2009) Надежност и одржување на технич-ките системи, НИП Студентски збор, Скопје
Zhang, D. P., Cheng, W. M., Wang, B. (2017): Varia-tional analysis of mid-span deflection of gantry cranes. Journal of Central South University, 24(11), 2705–2716.
Sakiev, D. (2023): Design and manufacturing of the lifting beam for the overhead crane with 5T capacity.
Ahmid, A., Le, V. N., Dao, T. M. (2017): An optimiza-tion procedure for overhead gantry crane exposed to buck¬ling and yield criteria. IRA International Journal of Tech¬nology and Engineering, 8, 28–38.
Haas, T. N. (2007): Numerical (FEA) evaluation of crane end buffer impact forces (Doctoral dissertation), Stellen¬bosch, University of Stellenbosch.
Ling, Z., Wang, M., Xia, J., Wang, S., Guo, X. (2018): Stress analysis for the critical metal structure of bridge crane. In: IOP Conference Series: Earth and Environ-mental Science, Vol. 108, No. 2, p. 022056). IOP Publish-ing. DOI: https://doi.org/10.1088/1755-1315/108/2/022056
Hyla, P. (2019): Overhead travelling crane construction deflection measurements with telematic approach. Journal of KONES, Powertrain and Transport, Vol. 26, No. 3. DOI: 10.2478/kones-2019-0057
Consolazio, G. R., Cowan, D. R. (2005): Numerically effi¬cient dynamic analysis of barge collisions with bridge piers. Journal of Structural Engineering, 131 (8), 1256-1266, https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1256)
Moskvichev, V. V., Chaban, E. A. (2019): Analysis of propagation of fatigue cracks in crane girders. Inorganic Materials, 55 (15), 1496–1502. DOI: https://doi.org/10.1134/S0020168519150123
Dong, Q., He, B., Qi, Q., Xu, G. (2021): Real‐time pre-diction method of fatigue life of bridge crane structure based on digital twin. Fatigue & Fracture of Engineering Materials & Structures, 44 (9), 2280–2306. https://doi.org/10.1111/ffe.13489
Wang, Z., Ran, Y., Yu, H., Jin, C., Zhang, G. (2021): Failure mode and effects analysis using function–motion–action decom¬position method and integrated risk priority number for mechatronic products: FMEA using FMA de¬composition method and IRPN for MPs. Quality and Reli-ability Engineering International, 37 (6), 2875–2899. https://doi.org/10.1002/qre.2895