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Abstract: The concept of energy harvesting systems allows sustainable energy sources, such as mechanical
energy, to be harvested from the environment. The feature of piezoelectric material to generate voltage as a result of its
deformation characterizes them as an energy harvesting tool, due to their robustness and efficiency characteristics. This
paper shows numerical modeling of an energy harvesting cantilever beam using the Euler-Bernoulli method. The FEM
simulations of the cantilever beam have been created in order to determine the optimal position of the piezoelectric
transducer along the beam. Furthermore, these conclusions have been used to develop the mathematical model in
MATLAB in order to investigate the effect of the geometry characteristics of the beam and the piezoelectric transducer
on the output parameters. The impact of the dimensions and effective area of the piezoelectric transducer and its location
on the cantilever beam as well as the effects of the dimensions of the beam have been studied in order to obtain an
optimal energy harvesting model in terms of its efficiency. Once the modeling phase has been completed, the output
results regarding the generated voltage and power from the energy harvesting system have been compared and models
have been validated.
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AHAJIMTNYKO MOJAEJINPAIBE U CUMYJIAIIMU HA KOH30JIEH CUCTEM
3A COBUPAILE EHEPTNJA CO METOAOT HA KOHEYHHU EJIEMEHTH

AnctpaxkT1: KoHIEenToT Ha cHCTeMH 3a cOOMpame eHeprija 0BO3MOXKYBa COOMPArbe Ha SHEpTHja 01 OJIPKIIMBU
W3BOPH, KaKBa IITO € MEeXaHWJKaTa eHepruja. [lne3oeneKkTpuyHNTe MaTepHjany TeHepupaaT HaloH Kako pe3ysTaT Ha
HUBHATa JepopMalyja, MpH MITO ce KapaKTepU3UpaaT co BIHCOKAa POOYCHOCT U €(PHKACHOCT, IIITO OBO3MOXKyBa HUBHA
IIpUMEHa KaKo ajJaTKa 3a cOOMpame eHepruja. Bo 0Boj Tpy 1 € M3BPIIEHO HYMEPHIKO MOAEIHPAhe Ha KOH30JIEH CHCTEM
3a cobupame eHepruja Kopucrejku ro meronot Ha Ojnep-beprymn. Cumynanunte Kou ce 0a3upaHd Ha METOIOT Ha
KOHEYHH €JIEMEHTH Ha KOH30JIEH CHCTEM Ce M3BEIEHH CO IEJl ONpeaelyBamke ONTHMAIHA MON0k0a Ha MHe30eleK-
TPHKOT 110 IOJDKMHATA Ha KOH30aTa. [JoHaTaMy OBHe 3aKJIy4OIM ce HCKOPUCTEHH 3a Pa3BOj HA MaTeMaTH4KU MOJIEI
Bo MATLAB, co nen aHanusupame Ha BIMjaHHETO Ha T€OMETPUCKUTE KapaKTePUCTUKH Ha KOH30JIaTa M MUE30eJIeK-
TPUKOT Bp3 U3JIe3HUTE MapameTpu. [IpoyueHo e BIujaHHeTo Ha AUMEH3HHUTE U e(peKTHBHATA MOBPILIHHA Ha MHE30eIIeK-
TPUKOT M HEroBara JOKalija Ha KOH30JaTa, Kako M e(ekTuTe o] IMMEH3MUTE Ha KOH30JaTa, CO el JU3ajHUpahe
ontuMalieH edukaceH Mozen 3a cobupame enepruja. OTkako (a3zara Ha MOJEINpPabE € 3aBpIIeHa, TOOHNEHHTE pe3yIl-
TaTH BO OAHOC Ha TEHEPHPAHHUOT HATIOH U MOKHOCT O] CHCTEMOT 3a COOMpame eHeprija ce CIOPEAeHH 1 MOJIEIUTE ce
BATHTUPAHH.

Knyunu 360poBu: cobupame eHeprija; MMe30eNeKTPUIHI MaTepHjai; KOH30J1a; MOACIUPAEe U CHUMYJIAIliH

1. INTRODUCTION and researchers are constantly trying to develop sus-
tainable solutions in order to fulfill energy demands.
The energy crisis is one of the main problems Therefore, technologies that use renewable energy

facing humanity today as a result of which science sources such as solar energy, kinetic energy, thermal


https://doi.org/10.55302/MESJ23411661029i

30 A. Ignjatovska, D. Pecioski, D. Siskovski, M. Anackova, S. Domazetovska

or bio-energy noticed rapid progress. Apart from the
macro-energy harvesting technologies which in-
clude renewable energy plants, recently, continuous
development has also been made in microenergy
harvesting technologies. Micro-energy harvesting
technology is focused on the alternatives to con-
ventional batteries and uses energy from mechanical
vibration, mechanical stress and strain, which gene-
rate low-level power expressed in mW or uW [1].
The piezoelectric energy harvesting technique has
been widely researched due to its high energy
conversion ability from mechanical vibration. This
technique uses the properties of piezoelectric mate-
rials to generate voltage under the influence of a
mechanical force.

Most research papers in the energy harvesting
area, present the harvester as a cantilever beam with
one or more piezoelectric layers, which is excited
harmonically at its fundamental natural frequency in
order to obtain maximum electrical output [2]. This
is due to the fact that compared to other structures,
the cantilever beam has a lower resonant frequency,
and provides higher stress and strain with less
ambient vibrational force [3]. There are various
methods for modeling an unimorph beam, or a beam
with a single piezoelectric transducer mounted on
its surface. Depending on the purpose of the model,
one has to determine which method is optimal. For
example, Belhora et al. [4] use the pin-force model
to develop a model that predicts the energy har-
vesting capabilities of an electrostrictive polymer
composite. Various papers [5, 6, 7] compare the
most used methods for analytical modeling: the pin-
force model, the enhanced-pin force model which
expands upon the pin-force concept, and the Euler-
Bernoulli model. The Euler-Bernoulli method has
been proven to be the most accurate representation
of a real energy harvesting system out of the three
methods, and for this reason it has been used in this
paper. On the other hand, the finite element method
has been widely used as an analysis tool for conti-
nuous systems with a finite number of concentrated
masses. The discretization of the continuous sys-
tems of a finite number of elements or concentrated
masses simplifies the mathematical apparatus or
analytical solutions to the dynamics of the elastic
structure from partial differential equations to a sys-
tem of ordinary differential equations [8]. Uddin et
al. [9] use the finite element method in determining
natural frequencies, modes, and stresses along a
cantilever piezoelectric energy harvesting beam.
Kumar et al. [10] use the finite element method for
coupled piezoelectric energy harvester in order to
discretize the electromechanical coupling phenome-

non between mechanical and electrical domains.
They optimize material properties that determine
the performance of piezoelectric energy harvesters
such as dielectric constant, piezoelectric strain
coefficient, electromechanical coupling coefficient,
Young modulus, density, and electrical and mecha-
nical quality factors [10]. An area in energy harves-
ting that opens up a wide research space is the
optimization of the design of the energy harvesting
system in order to generate maximal voltage.

In this paper, an optimization of the cantilever
piezoelectric energy harvesting beam concerning
the position of the piezoelectric transducer, the
position of the excitation force, and the geometrical
characteristics of the piezoelectric transducer and
the beam have been conducted. A combination of
two different modeling methods has been used: ana-
Iytical modeling using the Euler-Bernoulli method
and the finite element method.

2. MATHEMATICAL MODELING
a) Mathematical modeling of the beam

Continuous systems are mechanical systems
with continuously distributed mass and theoretically
have infinite degrees of freedom. In order to obtain
an analytical solution for the dynamics of these sys-
tems, certain approximations and simplifications
have to be adopted. In order to be able to use the
Euler-Bernoulli equation, the assumptions concern-
ing the material homogeneity of the beam and its
ideally constant width are adopted. Using these as-
sumptions, partial differential equations with cons-
tant coefficients are obtained. The solutions to these
partial differential equations represent the natural
frequencies of the system and the modes of oscil-
lation of the elastic structure.

The differential equation of motion of a conti-
nuous beam according to the Euler-Bernoulli meth-
od is represented with the following relation:

ELZYED - piy ) — paZ2ED (21

axt a2

where y is the deplacement of the beam, its density
is pp and Ay is its area of the cros-section, whereas
2 4

Py gg't) is kinetic energy, E, 1, 2 gg't) is po-
tential energy, and f (x, t) is the excitation force.

If the excitation force is a harmonic function,
the differential equation can be rewritten as:
Eblb 643’(95, t) azy(x! t) _ FO
ppAp  Ox* a2 p,A

sin(wt) §(x — Ly)
b
(2.2)
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where w is the frequency of the excitation force and
Ly is the distance from the clamped end to the point
where the excitation force is applied.

The general solution of the equation (2.2) can
be expressed as:

y(x,t) = X2, T; ()Y (x) (2.3)

where T;(t) is the i-th model coordinate of shape
and Y; (x) is the i-th mode shape of the beam.

Inman et al. [11] state that the first 3 modes (i
=1, 2, 3) in equation (2.3) are sufficient for genera-
ting the mode shape equation of the cantilever
beam.

By replacing expression (2.3) in (2.2), the
following differential equations can be obtained
[12]:

Y@ -2y () = 0, (2.4)
T(t)+w,2T(t) = 0. (2.5)

The solution of the first characteristic equation
depends only on the x coordinate:

Y (x) = Asin(Bx) + Bcos(Bx) +
+ Csinh(Bx) + Dcosh(Bx) (2.6)

where g is the wave number [11] and is expressed as:
B = w,2 L2 2.7)

T Eplp

where w,, is the natural frequency of the system.

In the order to obtain maximal deflections of
the beam, the frequency of the excitation force has
to be equal to the first natural frequency of the beam.
Constants A, B, C and D can be calculated using the
boundary conditions for clamped-free configuration
[11]. At the clamped end, for x = 0, slope and
deflection must be zero, while at the free end, for x
= |, shearing force and bending moment must be
equal to zero.

Finally, the general mode shape equation for a
cantilever beam could be expressed as:

Y, (x) = cosh(fB;L,) — cos(B;L,) —
Sinh(ﬂl’Lb) - Sin(ﬁil‘b)
~ cosh(B;Ly) + cos(BiLy) .
+ [sinh(B;Lp) — sin(B;Ly)],  (2.8)

where L, is the total length of the beam.

Solutions for B; (Figure 1) are calculated from
the characteristic equation:

cos(B;Ly) cosh(B;L,) = —1. (2.9)
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(4.694,0) (10.996,0)

Fig. 1. Graphical representation of solutions
to characteristic equation (2.9)

For the adopted value beam’s length of 0.561 m.
the first five natural frequencies (Table 1) can be
calculated using the following expression:

_i(BiLb)z Eplp
fi= 2 /—pbAb. (2.10)

The solution of equation (2.5) can be expressed
as a convolutional integral:

T() = ! _ e~ $@nit j Fy(x)e~%@nit sin(wy; (t — 7)) dr
“ 2.11)
where: w, is damped natural frequency,
¢ is damping ratio.
Table 1
First five natural frequencies of the beam

i BiLy Natural frequencies of the beam (Hz)

1 1.875104 3.8881

2 4.696409 24.3668

3 7.854757 68.2277

4 10.995540 133.6991

5 14.137168 221.0143

The beam curvature can be calculated as:

p(x,t) = "Z;g'” (2.12)

or average beam curvature:
o) = ifoLPp(x, t)dx (2.13)

where L, is the total length of the piezoelectric
transducer.
The applied moment acting on the beam can be
expressed as:
M(t) = Eplpp(t) (2.14)

b) Mathematical modeling of PZT

A general model for the piezoelectric trans-
ducer which presents the relationship between the
moment of the beam and generated voltage as a
function of time is:
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Ejt t
6g3lﬂ(1+_b)

V() =—

Eptp tp
2
Eptp tp
byt 1+(—) -(_
pp{ Eptp/ \tp

where g5, (V : E) is the voltage constant E,, (V . ﬁ)
is Young’s modulus of the material of the beam,
I, (m*) is the axial moment of inertia of the beam
and Ej, (%) is Young’s modulus of the piezoelec-
tric material. Concerning the geometry of the sys-
tem, t,(m) is the beam's thickness, t,(m) and
b, (m)are the thickness and width of the piezoelec-
tric transducer, respectively.
The generated power can be calculated as:

PO =V -1(t) (2.16)
I6) = Cp- (2.17)
d31-Ap

where I(t) is the current expressed as a function of
time, Cp is the capacitance of the piezoelectric
transducer, A,, is the effective area of the piezoelec-
tric transducer, and ds; is its piezoelectric strain
coefficient.

Based on these mathematical models of the
cantilever beam and piezoelectric transducer, ana-
Iytical modeling and simulations in MATLAB and
FEM simulations have been performed in order to
analyze this energy harvesting system in detail.

3. RESULTS AND DISCUSSION

Analytical modeling and FEM simulations
have been conducted in order to analyze the impact
of several input parameters on the generated output
power. The following properties have been studied:
position of the piezoelectric transducer along the
beam, position of the excitation force, length ratio
and thickness ratio of the beam and piezoelectric
transducer, respectively. Obtained optimal values
have been used as an input and an identical har-
monic excitation force has been applied to both
models. The analytical and FEM model have been
validated by comparison of the obtained results
concerning output voltage and power.

a) Position of piezoelectric transducer

Firstly, FEM simulations have been performed
in order to determine the optimal position of the
piezoelectric transducer along the beam, which

2
) +2

SM(b), (2.15)

Eptp
Eptp

2
t t
2+3—b+2(—b) ]}
tp \tp

would generate maximal power. According to re-
sults from FEM simulations (Figure 2), the maximal
output power is generated when the distance bet-
ween the clamped end of the beam and the piezo-
electric transducer equals zero. One may deduct that
by increasing this distance, output electric power
decreases. Therefore, optimal position of the piezo-
electric transducer is next to the clamped end of the
beam.

ok — — —
3 31 3.2 3.3 3.4 35 36 3.7 3.8 3.9 4
freq {Hz)

a) PZT is placed next to the clamped end

12T

L1 —— machanical power in (mW) |

—— alactric power out [mW)

0.9} ||
0.6
0.7}
0.6}
05}
0.4
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0.1

a 31 3.2 33 3.4 35 36 37 3B 19 4
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b) PZT is placed at the center of the beam
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¢) PZT is placed on the free end of the beam

Fig. 2. Output electric powe (mW)
Three different positions of the PZT

b) Position of excitation force

Output electric power is expected to change
when position of the excitation force is varied. In
order to discover optimal placement of excitation
harmonic force, which generates maximal output
electric power, analytical modeling in MATLAB

Mech. Eng. — Sci. J., 41, 1, 29-36 (2022)
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has been performed. By increasing the distance
from the clamped end of the beam to the line of
action of the excitation force, the applied moment to
the beam amplifies. As the obtained results from the
simulation (Figure 3) show, the optimal position of
the excitation force is at the free end of the beam.
The excitation force can be defined with the follow-

ing function:
F(t) =0.35-sin(2r - w, - t) =
= 0.35-sin(2m - 3.88 - t) (3.2)
1.6
14
12
% 1
=08
06
=%
04
02
0

11% 20% 29% 38% 47% 55% 64% 73% 82% 91% 100%

Distance from clamped end to line of action of excitation force (%)
Total length of the beam

Fig. 3. Output electrical power as a function of the position
of excitation force

In the optimized model the excitation force is
placed at the free end of the beam and follows the
function shown in (3.1).

c) Length ratio

Another parameter that has to be optimized is
the length of the piezoelectric transducer in relation
to the beam’s length. Analytical simulations in
MATLAB have been performed in order to deter-
mine optimal length of the piezoelectric transducer
which enables maximal power generation. Results
(Figure 4) show that when 47% of the length of the
beam is covered by a PZT, maximal power is
generated. Until certain value for the length of the
piezoelectric transducer is reached, output power
increases by increasing the length.

1

0.9
0.8
g 0.7
E 0.6
'g 0.5
g 0.4
P03
0.2
0.1

0

11% 20% 29% 38% 47% 55% 064% 73% 82% 91% 100%

Length of PZT (%)
Tength of beam

Fig. 4. Output electrical power as a function of length ratio
of PZT and beam
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For values of the length higher than the cros-
sing point, overall characteristics of the system get
affected and the effective cross-section, Young’s
modulus and natural frequencies change. Adverse
effects are caused by reducing beam strain and
deformation, and overall generated electric power.

d) Thickness ratio

Last parameter that has been optimized is
thickness ratio of piezoelectric transducer and
beam, respectively. Obtained results from MAT-
LAB simulations (Figure 5) show a peak value of
generated power for thickness ratio of 33%.

0.8
07
0.6

Eos

=

g

5 04

4

5 03

(-9
02
0.1

0

0% 7% 13% 20% 27% 33% 40% 47% 53% 60% 67% 73% 80% 87% 93% 100%

Thickness of PZT (%)
Thickness of beam

Fig. 5. Output electrical power as a function of thickness ratio
of PZT and beam

For values of the thickness ratio of the piezo-
electric transducer and the beam, respectively, the
generated power decreases by increasing the value
of thickness ratio.

e) MATLAB and FEM simulations
of optimized model

Analytical modeling and simulations and FEM
simulations of the optimized model (Figure 6) have
been performed and output results have been com-
pared. Identical input parameters which match cal-
culated optimal values, concerning the dimensions
and properties of the beam and the piezoelectric
transducer (Table 2) have been used. The frequency
of the excitation force matches the first natural
frequency of the system (Figure. 6).

F(t)

A

[
Ll

Fig. 6. Energy harvesting cantilever beam with PZT
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Table 2
Parameters of the beam and PZT

Parameter Not. Value Unit
Beam Length Ly 0.561 m
Width by, 0.04 m
Thickness t, 0.0015 m
Density Pb 7850  kg/m®
Young’s modulus  E,  2-10% Pa

PZT (PZT-5A) Voltage constant g3, —11.3-10° V-m/N

Dielectric constant  d3; —190-102 m/V
Young’s modulus  E,  3-10° Pa
Length L, 0.263 m
Width b,  0.04 m
Thickness t,  0.0005 m
Density pp 7950  kg/m?
Resistance R 1000 kQ
250
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g 9()
p 50
®0
§ 50
-100
-150 Vv V U
-200
-250
< v <
) o —_
2.00
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1.00
2 0.0
£
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(o
-1.00
-1.50
2.00
o g S
=) o -

Output results from the analytical modeling
and simulation in MATLAB (Figure 7) show that
voltage of 202.63 V and electrical power of 1.34 mV
have been generated in 3 seconds, at the first natural
frequency of the system. The highest values for the
generated voltage and power are achieved at the first
natural frequency of the system and therefore the
system was excited only on that frequency.

Obtained results from the FEM simulations
(Figure 8) show that in 3 seconds, voltage of
190.32 V and electrical power of 1.74 mW have
been generated at the first natural frequency of the
system. In the FEM simulations, until the first
natural frequency has been reached, the system is
excited by the excitation force given in expression
(3.1). After that, the frequency of the excitation
force is changed in order to excite the second natural
frequency of the system (24.37 Hz). Results show
that maximal output is achieved at the first natural
frequency as firstly stated.

W Q lf: <o
v— ol ol o
Time (s)
W, (- v =
—_ ol 1 e
Time(s)

b)

Fig. 7. Generated a) voltage (V) and b) electrical power (mW) from analytical simulations in MATLAB
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Fig. 8. Generated voltage (V) and electrical power (mW) from FEM simulations

Over a certain period of time, the generated
voltage and electric power are stored and their value
increases. In this paper, change of stored voltage
and electric power for a period of 3 seconds has
been plotted (Figure 7) and calculated (Figure 8).

Validation of the models has been performed
by comparison of the obtained output results con-
cerning the generated voltage and electrical power.
Acquired results from both models using two dif-
erent modeling methods have similar values and
therefore model is valid. Thus, model can success-
fully predict power generation from a cantilever
unimorph vibrating beam.

Maw. undic. nayu. ciuc. 41 (1) 29-36 (2023)

4. CONCLUSION

Analytical modeling based on Euler-Bernoulli
theorem and FEM simulations of energy harvesting
cantilever beam have been made. Optimal paramet-
ers of the model have been determined, concerning
the position of the piezoelectric transducer, position
of the excitation force, length and thickness ratio of
the piezoelectric transducer and the beam, respecti-
vely. Maximal electric power has been generated
for: location of the piezoelectric transducer next to
the clamped end of the beam, location of excitation
force on the free end of the beam, length ratio of
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0.47 and thickness ratio of 0.33 between the piezo-
electric transducer and the beam. Once the optimal
parameters have been defined, they have been used
as input parameters for the model. Based on an exact
model, simulations in MATLAB and FEM simula-
tions have been performed in order to determine
output voltage and electric power. Since obtained
output results for the identical model using two dif-
ferent techniques match, a deduction can be drawn
that the model is valid.

Although, this paper is purely theoretical, the
authors have also been working on an experimental
setup which is based on the obtained results from
the conducted software analyses. On that way,
created theoretical models would be validated by an
experiment. Also, an energy harvesting unimorph
beam, or a beam with a single piezoelectric trans-
ducer mounted on its surface is modelled in this
paper. In future work, using the proposed concept,
the model could analogically be upgraded in two
ways in order to generate higher voltage and electric
power. First way is by creating a bimorph energy
harvesting beam, by placing two PZT on the top and
bottom surfaces of the beam. The second approach
implies placing multiple PZT on the surface of the
beam, which would enable achieving the optimal
calculated length ratio of 0.47. Nevertheless, whi-
chever approach would be chosen, proper analyses
must be conducted, and adequate models must be
created.
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