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A b s t r a c t: The concept of energy harvesting systems allows sustainable energy sources, such as mechanical 

energy, to be harvested from the environment. The feature of piezoelectric material to generate voltage as a result of its 

deformation characterizes them as an energy harvesting tool, due to their robustness and efficiency characteristics. This 

paper shows numerical modeling of an energy harvesting cantilever beam using the Euler-Bernoulli method. The FEM 

simulations of the cantilever beam have been created in order to determine the optimal position of the piezoelectric 

transducer along the beam. Furthermore, these conclusions have been used to develop the mathematical model in 

MATLAB in order to investigate the effect of the geometry characteristics of the beam and the piezoelectric transducer 

on the output parameters. The impact of the dimensions and effective area of the piezoelectric transducer and its location 

on the cantilever beam as well as the effects of the dimensions of the beam have been studied in order to obtain an 

optimal energy harvesting model in terms of its efficiency. Once the modeling phase has been completed, the output 

results regarding the generated voltage and power from the energy harvesting system have been compared and models 

have been validated. 
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АНАЛИТИЧКО МОДЕЛИРАЊЕ И СИМУЛАЦИИ НА КОНЗОЛЕН СИСТЕМ  

ЗА СОБИРАЊЕ ЕНЕРГИЈА СО МЕТОДОТ НА КОНЕЧНИ ЕЛЕМЕНТИ 

А п с т р а к т: Концептот на системи за собирање енергија овозможува собирање на енергија од одржливи 

извори, каква што е механичката енергија. Пиезоелектричните материјали генерираат напон како резултат на 

нивната деформација, при што се карактеризираат со висока робусност и ефикасност, што овозможува нивна 

примена како алатка за собирање енергија. Во овој труд е извршено нумеричко моделирање на конзолен систем 

за собирање енергија користејќи го методот на Ојлер-Бернули. Симулациите кои се базирани на методот на 

конечни елементи на конзолен систем се изведени со цел определување оптимална положба на пиезоелек-

трикот по должината на конзолата. Понатаму овие заклучоци се искористени за развој на математички модел 

во MATLAB, со цел анализирање на влијанието на геометриските карактеристики на конзолата и пиезоелек-

трикот врз излезните параметри. Проучено е влијанието на димензиите и ефективната површина на пиезоелек-

трикот и неговата локација на конзолата, како и ефектите од димензиите на конзолата, со цел дизајнирање 

оптимален ефикасен модел за собирање енергија. Откако фазата на моделирање е завршена, добиените резул-

тати во однос на генерираниот напон и моќност од системот за собирање енергија се споредени и моделите се 

валидирани. 

Клучни зборови: собирање енергија; пиезоелектрични материјали; конзола; моделирање и симулации 

1. INTRODUCTION 

The energy crisis is one of the main problems 

facing humanity today as a result of which science 

and researchers are constantly trying to develop sus-

tainable solutions in order to fulfill energy demands. 

Therefore, technologies that use renewable energy 

sources such as solar energy, kinetic energy, thermal 
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or bio-energy noticed rapid progress. Apart from the 

macro-energy harvesting technologies which in-

clude renewable energy plants, recently, continuous 

development has also been made in microenergy 

harvesting technologies. Micro-energy harvesting 

technology is focused on the alternatives to con-

ventional batteries and uses energy from mechanical 

vibration, mechanical stress and strain, which gene-

rate low-level power expressed in mW or μW [1]. 

The piezoelectric energy harvesting technique has 

been widely researched due to its high energy 

conversion ability from mechanical vibration. This 

technique uses the properties of piezoelectric mate-

rials to generate voltage under the influence of a 

mechanical force.  

Most research papers in the energy harvesting 

area, present the harvester as a cantilever beam with 

one or more piezoelectric layers, which is excited 

harmonically at its fundamental natural frequency in 

order to obtain maximum electrical output [2]. This 

is due to the fact that compared to other structures, 

the cantilever beam has a lower resonant frequency, 

and provides higher stress and strain with less 

ambient vibrational force [3]. There are various 

methods for modeling an unimorph beam, or a beam 

with a single piezoelectric transducer mounted on 

its surface. Depending on the purpose of the model, 

one has to determine which method is optimal. For 

example, Belhora et al. [4] use the pin-force model 

to develop a model that predicts the energy har-

vesting capabilities of an electrostrictive polymer 

composite. Various papers [5, 6, 7] compare the 

most used methods for analytical modeling: the pin-

force model, the enhanced-pin force model which 

expands upon the pin-force concept, and the Euler-

Bernoulli model. The Euler-Bernoulli method has 

been proven to be the most accurate representation 

of a real energy harvesting system out of the three 

methods, and for this reason it has been used in this 

paper. On the other hand, the finite element method 

has been widely used as an analysis tool for conti-

nuous systems with a finite number of concentrated 

masses. The discretization of the continuous sys-

tems of a finite number of elements or concentrated 

masses simplifies the mathematical apparatus or 

analytical solutions to the dynamics of the elastic 

structure from partial differential equations to a sys-

tem of ordinary differential equations [8]. Uddin et 

al. [9] use the finite element method in determining 

natural frequencies, modes, and stresses along a 

cantilever piezoelectric energy harvesting beam. 

Kumar et al. [10] use the finite element method for 

coupled piezoelectric energy harvester in order to 

discretize the electromechanical coupling phenome-

non between mechanical and electrical domains. 

They optimize material properties that determine 

the performance of piezoelectric energy harvesters 

such as dielectric constant, piezoelectric strain 

coefficient, electromechanical coupling coefficient, 

Young modulus, density, and electrical and mecha-

nical quality factors [10]. An area in energy harves-

ting that opens up a wide research space is the 

optimization of the design of the energy harvesting 

system in order to generate maximal voltage.  

In this paper, an optimization of the cantilever 

piezoelectric energy harvesting beam concerning 

the position of the piezoelectric transducer, the 

position of the excitation force, and the geometrical 

characteristics of the piezoelectric transducer and 

the beam have been conducted. A combination of 

two different modeling methods has been used: ana-

lytical modeling using the Euler-Bernoulli method 

and the finite element method. 

2. MATHEMATICAL MODELING 

a) Mathematical modeling of the beam 

Continuous systems are mechanical systems 

with continuously distributed mass and theoretically 

have infinite degrees of freedom. In order to obtain 

an analytical solution for the dynamics of these sys-

tems, certain approximations and simplifications 

have to be adopted. In order to be able to use the 

Euler-Bernoulli equation, the assumptions concern-

ing the material homogeneity of the beam and its 

ideally constant width are adopted. Using these as-

sumptions, partial differential equations with cons-

tant coefficients are obtained. The solutions to these 

partial differential equations represent the natural 

frequencies of the system and the modes of oscil-

lation of the elastic structure.  

The differential equation of motion of a conti-

nuous beam according to the Euler-Bernoulli meth-

od is represented with the following relation: 

 𝐸𝐼𝑦
𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4 = 𝑓(𝑥, 𝑡) − 𝜌𝐴
𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2  (2.1) 

where y is the deplacement of the beam, its density 

is 𝜌𝑏 and Ab is its area of the cros-section, whereas 

𝜌𝑏𝐴𝑏
𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2  is kinetic energy, 𝐸𝑏𝐼𝑏
𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4  is po-

tential energy, and 𝑓(𝑥, 𝑡) is the excitation force. 

If the excitation force is a harmonic function, 

the differential equation can be rewritten as: 

𝐸𝑏𝐼𝑏

𝜌𝑏 𝐴𝑏

𝜕4𝑦(𝑥, 𝑡)

𝜕𝑥4
+

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
=

𝐹0

𝜌𝑏𝐴𝑏

sin(𝜔𝑡) 𝛿(𝑥 − 𝐿𝑓) 

(2.2) 



Analytical modeling and FEM simulations of energy harvesting cantilever beam 31 

Маш. инж. науч. спис. 41 (1) 29–36 (2023) 

where ω is the frequency of the excitation force and 

𝐿𝑓 is the distance from the clamped end to the point 

where the excitation force is applied. 

The general solution of the equation (2.2) can 

be expressed as: 

 𝑦(𝑥, 𝑡) = ∑ 𝑇𝑖(𝑡)𝑌𝑖(𝑥)∞
𝑖=1  (2.3) 

where 𝑇𝑖(𝑡) is the i-th model coordinate of shape 

and 𝑌𝑖(𝑥) is the i-th mode shape of the beam. 

Inman et al. [11] state that the first 3 modes (i 

= 1, 2, 3) in equation (2.3) are sufficient for genera-

ting the mode shape equation of the cantilever 

beam. 

By replacing expression (2.3) in (2.2), the 

following differential equations can be obtained 

[12]: 

 𝑌(𝑥)𝑖𝑣 −
𝜔𝑛

2

𝑐2 𝑌(𝑥) = 0,  (2.4) 

 �̈�(𝑡)+𝜔𝑛
2𝑇(𝑡) = 0. (2.5) 

The solution of the first characteristic equation 

depends only on the x coordinate: 

 𝑌(𝑥) = 𝐴sin(𝛽𝑥) + 𝐵cos(𝛽𝑥) + 

                           + 𝐶sinℎ(𝛽𝑥) + 𝐷cosℎ(𝛽𝑥)   (2.6) 

where 𝛽 is the wave number [11] and is expressed as: 

  𝛽4 = 𝜔𝑛
2 𝜌𝑏 𝐴𝑏

𝐸𝑏𝐼𝑏
 (2.7) 

where 𝜔𝑛 is the natural frequency of the system. 

In the order to obtain maximal deflections of 

the beam, the frequency of the excitation force has 

to be equal to the first natural frequency of the beam. 

Constants A, B, C and D can be calculated using the 

boundary conditions for clamped-free configuration 

[11]. At the clamped end, for x = 0, slope and 

deflection must be zero, while at the free end, for x 

= l, shearing force and bending moment must be 

equal to zero. 

Finally, the general mode shape equation for a 

cantilever beam could be expressed as: 

 𝑌𝑖(𝑥) = cosℎ(𝛽𝑖𝐿𝑏) − cos(𝛽𝑖𝐿𝑏) − 

                       −
sinℎ(𝛽𝑖𝐿𝑏) − sin(𝛽𝑖𝐿𝑏)

cosℎ(𝛽𝑖𝐿𝑏) + cos(𝛽𝑖𝐿𝑏)
· 

                       ·  [sinℎ(𝛽𝑖𝐿𝑏) − sin(𝛽𝑖𝐿𝑏)],  (2.8) 

where 𝐿𝑏 is the total length of the beam. 

Solutions for 𝛽𝑖 (Figure 1) are calculated from 

the characteristic equation: 

 cos(𝛽𝑖𝐿𝑏) cosℎ(𝛽𝑖𝐿𝑏) = −1. (2.9) 

 

Fig. 1. Graphical representation of solutions  

to characteristic equation (2.9) 

For the adopted value beam’s length of 0.561 m. 

the first five natural frequencies (Table 1) can be 

calculated using the following expression: 

 𝑓𝑖 =
1

2𝜋

(𝛽𝑖𝐿𝑏)2

𝐿𝑏
2 √

𝐸𝑏𝐼𝑏

𝜌𝑏 𝐴𝑏
 . (2.10) 

The solution of equation (2.5) can be expressed 

as a convolutional integral: 

𝑇(𝑡) =
1

𝜔𝑑𝑖

𝑒−𝜉𝜔𝑛𝑖𝑡 ∫ 𝐹𝑖(𝜏)𝑒−𝜉𝜔𝑛𝑖𝑡 sin(𝜔𝑑𝑖(𝑡 − 𝜏)) 𝑑𝜏 

  (2.11) 

where: 𝜔𝑑  is damped natural frequency,  

            𝜉 is damping ratio. 

T a b l e  1 

First five natural frequencies of the beam 

i 𝛽𝑖𝐿𝑏  Natural frequencies of the beam (Hz) 

1 1.875104 3.8881 

2 4.696409 24.3668 

3 7.854757 68.2277 

4 10.995540 133.6991 

5 14.137168 221.0143 

 

The beam curvature can be calculated as: 

 𝜌(𝑥, 𝑡) =
𝜕2𝑦(𝑥,𝑡)

𝜕𝑥2  (2.12) 

or average beam curvature: 

 �̅�(𝑡) =
1

𝐿𝑃
∫ 𝜌(𝑥, 𝑡)𝑑𝑥

𝐿𝑃

0
 (2.13) 

where 𝐿𝑝  is the total length of the piezoelectric 

transducer. 

The applied moment acting on the beam can be 

expressed as: 

 𝑀(𝑡)  = 𝐸𝑏𝐼𝑏�̅�(𝑡) (2.14) 

b) Mathematical modeling of PZT  

A general model for the piezoelectric trans-

ducer which presents the relationship between the 

moment of the beam and generated voltage as a 

function of time is:
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 𝑉(𝑡) = − 
6𝑔31

𝐸𝑏𝑡𝑏
𝐸𝑝𝑡𝑝

(1+
𝑡𝑏
𝑡𝑝

)

𝑏𝑝𝑡𝑝{1+(
𝐸𝑏𝑡𝑏
𝐸𝑝𝑡𝑝

)
2

∙(
𝑡𝑏
𝑡𝑝

)
2

+2
𝐸𝑏𝑡𝑏
𝐸𝑝𝑡𝑝

[2+3
𝑡𝑏
𝑡𝑝

+2(
𝑡𝑏
𝑡𝑝

)
2

 ]}

∙ 𝑀(𝑡),  (2.15) 

where 𝑔31 (V ∙
m

N
), is the voltage constant 𝐸𝑏 (V ∙

N

mm2) 

is Young’s modulus of the material of the beam, 

𝐼𝑏 (m4) is the axial moment of inertia of the beam 

and 𝐸𝑝 (
N

m2) is Young’s modulus of the piezoelec-

tric material. Concerning the geometry of the sys-

tem, 𝑡𝑏(m) is the beam's thickness, 𝑡𝑝(m) and 

𝑏𝑝(m)are the thickness and width of the piezoelec-

tric transducer, respectively. 

The generated power can be calculated as: 

 𝑃(t) = 𝑉(t) ∙ 𝐼(𝑡) (2.16) 

 𝐼(𝑡) = 𝐶𝑃 ∙
d𝑉

d𝑡
  (2.17) 

 𝐶𝑃 =
𝑑31∙𝐴𝑝

𝑔31∙𝑡𝑝
  (2.18) 

where 𝐼(𝑡) is the current expressed as a function of 

time, 𝐶𝑃  is the capacitance of the piezoelectric 

transducer, 𝐴𝑝 is the effective area of the piezoelec-

tric transducer, and 𝑑31  is its piezoelectric strain 

coefficient. 

Based on these mathematical models of the 

cantilever beam and piezoelectric transducer, ana-

lytical modeling and simulations in MATLAB and 

FEM simulations have been performed in order to 

analyze this energy harvesting system in detail. 

3. RESULTS AND DISCUSSION 

Analytical modeling and FEM simulations 

have been conducted in order to analyze the impact 

of several input parameters on the generated output 

power. The following properties have been studied: 

position of the piezoelectric transducer along the 

beam, position of the excitation force, length ratio 

and thickness ratio of the beam and piezoelectric 

transducer, respectively. Obtained optimal values 

have been used as an input and an identical har-

monic excitation force has been applied to both 

models. The analytical and FEM model have been 

validated by comparison of the obtained results 

concerning output voltage and power. 

a) Position of piezoelectric transducer 

Firstly, FEM simulations have been performed 

in order to determine the optimal position of the 

piezoelectric transducer along the beam, which 

would generate maximal power. According to re-

sults from FEM simulations (Figure 2), the maximal 

output power is generated when the distance bet-

ween the clamped end of the beam and the piezo-

electric transducer equals zero. One may deduct that 

by increasing this distance, output electric power 

decreases. Therefore, optimal position of the piezo-

electric transducer is next to the clamped end of the 

beam. 

 
a) PZT is placed next to the clamped end 

 
b) PZT is placed at the center of the beam 

 
c) PZT is placed on the free end of the beam  

Fig. 2. Output electric powe (mW)  

Three different positions of the PZT 

b) Position of excitation force 

Output electric power is expected to change 

when position of the excitation force is varied. In 

order to discover optimal placement of excitation 

harmonic force, which generates maximal output 

electric power, analytical modeling in MATLAB 
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has been performed. By increasing the distance 

from the clamped end of the beam to the line of 

action of the excitation force, the applied moment to 

the beam amplifies. As the obtained results from the 

simulation (Figure 3) show, the optimal position of 

the excitation force is at the free end of the beam. 

The excitation force can be defined with the follow-

ing function: 

𝐹(𝑡) = 0.35 ∙ sin(2𝜋 ∙ 𝜔1 ∙ 𝑡) = 

= 0.35 ∙ sin(2𝜋 ∙ 3.88 ∙ 𝑡)          (3.1) 

 
Fig. 3. Output electrical power as a function of the position  

of excitation force 

In the optimized model the excitation force is 

placed at the free end of the beam and follows the 

function shown in (3.1). 

c) Length ratio 

Another parameter that has to be optimized is 

the length of the piezoelectric transducer in relation 

to the beam’s length. Analytical simulations in 

MATLAB have been performed in order to deter-

mine optimal length of the piezoelectric transducer 

which enables maximal power generation. Results 

(Figure 4) show that when 47% of the length of the 

beam is covered by a PZT, maximal power is 

generated. Until certain value for the length of the 

piezoelectric transducer is reached, output power 

increases by increasing the length. 

 
Fig. 4. Output electrical power as a function of length ratio  

of PZT and beam 

For values of the length higher than the cros-

sing point, overall characteristics of the system get 

affected and the effective cross-section, Young’s 

modulus and natural frequencies change. Adverse 

effects are caused by reducing beam strain and 

deformation, and overall generated electric power. 

d) Thickness ratio 

Last parameter that has been optimized is 

thickness ratio of piezoelectric transducer and 

beam, respectively. Obtained results from MAT-

LAB simulations (Figure 5) show a peak value of 

generated power for thickness ratio of 33%.  

 
Fig. 5. Output electrical power as a function of thickness ratio 

of PZT and beam 

For values of the thickness ratio of the piezo-

electric transducer and the beam, respectively, the 

generated power decreases by increasing the value 

of thickness ratio. 

e) MATLAB and FEM simulations  

of optimized model 

Analytical modeling and simulations and FEM 

simulations of the optimized model (Figure 6) have 

been performed and output results have been com-

pared. Identical input parameters which match cal-

culated optimal values, concerning the dimensions 

and properties of the beam and the piezoelectric 

transducer (Table 2) have been used. The frequency 

of the excitation force matches the first natural 

frequency of the system (Figure. 6). 

 

Fig. 6. Energy harvesting cantilever beam with PZT 
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T a b l e  2 

Parameters of the beam and PZT 

 Parameter Not. Value Unit 

Beam Length 𝐿𝑏 0.561 m 

 Width 𝑏𝑏 0.04 m 

 Thickness 𝑡𝑏 0.0015 m 

 Density 𝜌𝑏 7850 kg/m3 

 Young’s modulus 𝐸𝑏 2∙1011 Pa 

PZT (PZT-5A) Voltage constant 𝑔31 –11.3∙10–3 V∙m/N 

 Dielectric constant 𝑑31 –190∙10–12 m/V 

 Young’s modulus 𝐸𝑝 3∙103 Pa 

 Length 𝐿𝑝 0.263 m 

 Width 𝑏𝑝 0.04 m 

 Thickness 𝑡𝑝 0.0005 m 

 Density 𝜌𝑝 7950 kg/m3 

 Resistance 𝑅 1000 kΩ 

Output results from the analytical modeling 

and simulation in MATLAB (Figure 7) show that 

voltage of 202.63 V and electrical power of 1.34 mV 

have been generated in 3 seconds, at the first natural 

frequency of the system. The highest values for the 

generated voltage and power are achieved at the first 

natural frequency of the system and therefore the 

system was excited only on that frequency. 

Obtained results from the FEM simulations 

(Figure 8) show that in 3 seconds, voltage of 

190.32 V and electrical power of 1.74 mW have 

been generated at the first natural frequency of the 

system. In the FEM simulations, until the first 

natural frequency has been reached, the system is 

excited by the excitation force given in expression 

(3.1). After that, the frequency of the excitation 

force is changed in order to excite the second natural 

frequency of the system (24.37 Hz). Results show 

that maximal output is achieved at the first natural 

frequency as firstly stated. 

 
a) 

  
b) 

Fig. 7. Generated a) voltage (V) and b) electrical power (mW) from analytical simulations in MATLAB 
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a) 

 
b) 

Fig. 8. Generated voltage (V) and electrical power (mW) from FEM simulations

Over a certain period of time, the generated 

voltage and electric power are stored and their value 

increases. In this paper, change of stored voltage 

and electric power for a period of 3 seconds has 

been plotted (Figure 7) and calculated (Figure 8).  

Validation of the models has been performed 

by comparison of the obtained output results con-

cerning the generated voltage and electrical power. 

Acquired results from both models using two dif-

erent modeling methods have similar values and 

therefore model is valid. Thus, model can success-

fully predict power generation from a cantilever 

unimorph vibrating beam. 

4. CONCLUSION 

Analytical modeling based on Euler-Bernoulli 

theorem and FEM simulations of energy harvesting 

cantilever beam have been made. Optimal paramet-

ers of the model have been determined, concerning 

the position of the piezoelectric transducer, position 

of the excitation force, length and thickness ratio of 

the piezoelectric transducer and the beam, respecti-

vely. Maximal electric power has been generated 

for: location of the piezoelectric transducer next to 

the clamped end of the beam, location of excitation 

force on the free end of the beam, length ratio of 
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0.47 and thickness ratio of 0.33 between the piezo-

electric transducer and the beam. Once the optimal 

parameters have been defined, they have been used 

as input parameters for the model. Based on an exact 

model, simulations in MATLAB and FEM simula-

tions have been performed in order to determine 

output voltage and electric power. Since obtained 

output results for the identical model using two dif-

ferent techniques match, a deduction can be drawn 

that the model is valid. 

Although, this paper is purely theoretical, the 

authors have also been working on an experimental 

setup which is based on the obtained results from 

the conducted software analyses. On that way, 

created theoretical models would be validated by an 

experiment. Also, an energy harvesting unimorph 

beam, or a beam with a single piezoelectric trans-

ducer mounted on its surface is modelled in this 

paper. In future work, using the proposed concept, 

the model could analogically be upgraded in two 

ways in order to generate higher voltage and electric 

power. First way is by creating a bimorph energy 

harvesting beam, by placing two PZT on the top and 

bottom surfaces of the beam. The second approach 

implies placing multiple PZT on the surface of the 

beam, which would enable achieving the optimal 

calculated length ratio of 0.47. Nevertheless, whi-

chever approach would be chosen, proper analyses 

must be conducted, and adequate models must be 

created. 
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