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A b s t r a c t: A structured approach is fundamental in designing a complex multivariable process, while achiev-

ing specified product quality. Nominal values of process parameters of an injection molding process are defined by 

implementing DOE methodology. Optimisation of experimental phase is achieved by progressive information acquir-

ing concerning influential input factors and DOE design. Hence, most influential machine process parameters are varied 

using a non-standard fraction-factorial design. A linear regression model with included elements of second order inter-

action is defined based on obtained data. Additional testing of its validation is in order before reaching a final conclu-

sion. Firstly, model significance is tested by conducting an ANOVA analysis. Only significant models prove that DOE 

has been adequately planned and factors which affect the controlled output have been chosen. Finally, DOE is com-

pleted by adequacy analysis of the regression model. Lack-of-fit test is chosen to test whether the model is a proper 

representation of the real process. 
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ПРИМЕНА НА НЕСТАНДАРДЕН DOE И НЕГОВА ВАЛИДАЦИЈА ЗА ДЕФИНИРАЊЕ  

НА НОМИНАЛНИ ВРЕДНОСТИ НА ВЛЕЗНИ ПАРАМЕТРИ ЗА ПРОИЗВОДСТВЕН ПРОЦЕС 

А п с т р а к т: При дизајнирање на комплексен производен процес кој зависи од голем број влезни вари-

јабли, кој треба да се карактеризира со одредено ниво на квалитет, неопходна е примена на структуиран прис-

тап. Во овој труд, DOE методот е искористен за дефинирање на номиналните вредности на влезните процесни 

параметри за процес на инјекционо вбризгување. Користејќи ги прогресивно стекнатите сознанија за процесот 

во врска со највлијателните влезни фактори и соодветниот DOE дизајн кој би се искористил, извршена е 

оптимизација на експерименталната фаза. Следствено, при изведба на експериментот, извршена е варијација 

само на највлијателните влезни фактори, користејќи нестандарден скратен факторен дизајн. Врз база на експе-

риментално стекнатите податоци генериран е линеарен регресивен модел со членови на интеракција од втор 

ред. Пред да се донесе финален заклучок, направени се дополнителни анализи за валидација на моделот. Нај-

прво, преку АНОВА анализа тестирана е значајноста на регресивниот модел. Само значаен модел потврдува 

дека фазата на планирање на DOE била исправно извршена и избраните влезни фактори предизвикуваат варија-

ција на контролираниот одзив. Конечно, DOE е комплетиран со анализа на адекватност на моделот. Lack-of-fit 

тестот покажува дали моделот реално ги претставува експериментално стекнатите податоци. 

Клучни зборови: дизајн на експерименти; нестандарден скратен факторен дизајн; инјекционо вбрзигување; 

валидација на модел. 

INTRODUCTION 

Implementation of design of experiments 

(DOE) methodology at the earliest, trial stages of 

the development cycle of a new process, sets a solid 

foundation for productive and quality serial produc-

tion process. This especially applies to multivaria-

ble production processes where part quality varies 

due to various controlled and uncontrolled factors.  

The essence of DOE is its planning phase. 

Only properly planned DOE leads to efficient ex-

periment and applicable data. Ideal planning phase 

of DOE would result in minimal number of experi-

mental iterations, while including all influential in-

put factors and minimizing the experimental error. 

Consequently, relevant data would be collected and 

analysed by statistical methods which would enable 

development of a reliable model-based process.  
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A method to determine the minimal number of 

experimental iterations was proposed by MKS [1]. 

The study presents that fractional factorial model 

shows approximately same results as full factorial 

model. Ten input factors are varied. In practise this 

would cause decrease of experiment efficiency. 

Also, experimental error could not be estimated be-

cause experiment repetition is not included. 

Crucial part of the planning phase is choice of 

input factors and their levels. Moreover, signifi-

cance of collected data is directly predetermined by 

the selected DOE design. In order to simplify plan-

ning of DOE, Andrisano et al [2] propose an 

algorithm which determines optimal set of process 

parameters for given product requirements. How-

ever, method which determines proper DOE design 

is not included. S. Rajalingam et al [3] use three in-

put factors with repetition. Abohashima et al [4] use 

four input factors with repetition to determine the 

influence of chosen factors on attributive characte-

ristics. Both use a full factorial design. Effects of 

factors are calculated and plotted in Minitab soft-

ware, but models are not defined. 

After experiment performance, data analysis is 

in order. Statistical methods are used in transform-

ing gained data into useful information. Output of 

DOE is a regressive model which represents the real 

process and identifies change in controlled parame-

ter caused by variation of input factors. V. García et 

al [5] predict product quality in a tubing extrusion 

process using a regression model. The data set is ob-

tained from a manufacturing company, collected 

among a longer production period. One of the many 

benefits of using DOE methodology is that relevant 

data set could be collected in only a few hours. 

Choice of optimal type of a regression model de-

pends on the nature of the process itself. Pan et al 

[6] present comparison between different types of 

regression models. Kulkarni [7] shows that a linear 

regression model which involves first-order in-

teraction members is the most adequate one to de-

scribe an injection molding process.  

Review of relevant literature shows that while 

individual stages of DOE are analyzed in detail, 

elaborated study of all stages used in solving a prac-

tical problem is not included. Proposed paper uses 

detailed analysis of all DOE stages in order to de-

termine nominal values of process parameters of an 

injection molding process. Furthermore, it uses a 

non-standard DOE design which increases effici-

ency of the experimental phase, while including the 

effect of all influential factors. Based on acquired 

data, a linear regression model which involves first-

order interaction members is defined. Prior to final 

acceptance of the regression model, additional 

analyses for its validation are conducted. Firstly, 

model significance is conducted through ANOVA 

analysis. ANOVA decomposes total variance into 

variability occurred under the influence of control-

led factors and uncontrolled (residual) factors [8]. 

Only if a model proves to be significant, one may 

accept obtained data set of the experimental phase 

and continue further analysis. Finally, DOE is 

completed by conducting an analysis of adequacy of 

the regression model. Lack-of-fit test is used to test 

whether the model is a proper representation of the 

real process and collected data. Additionally, an 

Excel template has been developed for simple and 

fast future analysis of the any generated data set 

from DOE. A standard statistical software performs 

black-box calculations and only generates required 

output data. Using the proposed template, all the 

user would have to do is input the collected data and 

a mathematical model would be generated. Its signi-

ficance and adequacy are tested as well, and results 

are printed instantly on screen.  

METHODOLOGY 

A case study is analysed. The flow of activities 

is shown in Figure 1. The purposes of this study are: 

1. examination of correlation between the in-

put machine process parameters of an injection 

molding process and critical for assembly dimen-

sion of a molded part 

2. performing an efficient DOE  

3. defining a regression model  

4. validation of planning phase of DOE 

5. validation of the regression model 

6. defining nominal values for the injection 

molding production process.  

While variable characteristics of the molded 

part are the controlled output, attributive character-

istics must not be impaired. 

An alternative approach concerning choice of 

DOE design is proposed. Therefore, the experi-

mental part of this study case is performed in two 

phases. The first phase examines influence of six 

factors at two levels using a standard full factorial 

DOE design. Input factors and their levels have 

been selected based on empirical experience and re-

search [8]. Factor effects are estimated and only the 

most influential ones are used as input factors in 

phase 2 of the experimental stage. 
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Fig. 1. Algorithm of activities for the case study acquired data 

of the performed experiment, a linear regression model with 

included elements of second-order interaction is defined 

Four factors are varied using a non-standard 

fractional-factorial DOE design with one central 

point. Based on DOE could be completed only if 

validation tests are satisfied. Firstly, ANOVA ana-

lysis is carried out. ANOVA makes a direct 

comparison between the estimated change in the 

output due to variation of the controlled input fac-

tors and change in the output as a result to experi-

mental error. Basically, variations between formed 

groups in DOE and within groups are compared. In 

this paper, ANOVA is used to test whether appro-

priate DOE design and factors have been chosen in 

the planning phase of DOE. Consequently, two 

hypotheses are set: 

H0: μ1 = μ2 = μ3 mean values of individual 

groups are statistically equal. 

HА: at least two individual groups have differ-

ent mean values. 

If the null hypothesis were to be met, it could 

be concluded that the change of the controlled 

factors does not affect the variation of the analyzed 

response. The change of the output is caused by 

uncontrolled factors. The collected data set is not 

statistically significant due to improper DOE design 

or choice of factors. Experimental phase would have 

to be repeated, using different design and/or factors.  

On the other hand, if the alternative hypothesis 

were to be accepted, the variations of the input fac-

tors affect the variation of the controlled response. 

This proves significance of the regression model. It 

could be concluded that planing phase of DOE was 

properly done, concerning chosen  design, factors 

and their levels. Once ANOVA test is fullfilled, 

DOE could proceed forward.  

That one may properly complete DOE, vali-

dation test of the regression model has to be 

fullfilled. Fisher’s lack-of-fit test is conducted in 

order to determine significance of non-conformity 

error. Basically, the test shows whether the regres-

sion model is a true representation of the collected 

data set of DOE. Therefore, again, two hypotheses 

are set: 

H0: there is no significant lack-of-fit. 

HА: there is a significant lack-of-fit. 

If the null hypothesis were to be fullfilled, the 

regression model could be accepted as adequate, 

because there is not a significant non-conformity 

error due to lack-of-fit. DOE could be completed 

and the model could be used in solving the main 

problem. Nominal values for process parameters 

could be deteremined using the defined regression 

model. 

If the alternative hypothesis were to be met, the 

regression model is not adequate. There may be 

some influential factors whose effect had not been 

taken into account. Changes in the regression model 

are in order.  
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DESIGN OF EXPERIMENSTS (DOE) 

A. Planning phase of DOE 

Prior to experiment realization, all stages of its 

planning phase have to be properly completed. In-

put factors and their levels are chosen based on re-

viewed literature and past experience concerning 

the nature of the process, used granule and geometry 

of the molded part. The controlled output is a linear 

dimension specified in the technical documentation 

of the part, and its value is 209±0.46 mm. 

 Choice of DOE design is fundamental in de-

veloping an efficient experiment and collecting rel-

evant data. There are various types of experimental 

design. Most commonly used, one in DOE is facto-

rial design, because it the only type of experimental 

design that can detect the effect of mutual interac-

tion of factors [9]. Most experiments require analy-

sis of the effects of several factors at the same time. 

All types of factorial designs can be divided in two 

large groups: 

– standard DOE design or full factorial design 

– non-standard DOE design or fraction-facto-

rial design. 

Standard DOE design can be defined as an ex-

periment which investigates all possible combina-

tions of factors. Table 1 shows a general experi-

mental matrix for full factorial design with two fac-

tors A (a levels) and B (b levels).  

First part of experimental phase is performed 

according to full factorial design. Based on research 

and experience, six most influential machine pro-

cess parameters (Table 2) are chosen and varied 

within their process window. 

There are up to four process parameters that 

will cause a significant variation in dimensions of a 

molded part [7]. Having in mind that practical and 

efficient DOE is one of the purposes of this study 

case, while enough replications to minimize the ex-

perimental error are performed, it is necessary to se-

lect only the most influential factors and vary them. 

In order to determine the four most influential pro-

cess parameters, a full factorial 26 standard design 

of DOE is performed and obtained data set is ana-

lyzed using a statistical tool – Tornado diagram 

(Figure 2). 

A total of 26 = 64 (2k, 2 – number of levels for 

each factor, k – number of factors varied) combina-

tions of the experiment were performed, without 

repetition. Temperature of molten plastic (E) and 

screw speed (F) are omitted in further analysis, 

because full factorial DOE proved them to be 

factors with lowest influence. 

T a b l e  1 

General experimental matrix  

for full factorial design 

 FACTOR  B 

F 

A 

C 

T 

O 

R 

 

A 

 1 2 … b 

1 
y111, y112, 

…,  y11n 

y121, y122, 

…,  y12n 
….. 

y1b1, y1b2, 

…,  y1bn 

2 
y211, y212, 

…,  y21n, 

y221, y222, 

…,  y22n 
…. 

y2b1, y2b2, 

…,  y2bn 

… …… ….. …. ….. 

a 
ya11, ya12, 

…,  ya1n 

ya21, ya22, 

…,  ya2n 
…. 

yab1, yab2, 

…,  yabn 

T a b l e  2 

High and low levels of input parameters 

  LEVELS 

PARAMETER ‒ + 

A: Mold temperature (°C) 50 90 

B: Injection speed (cm3/s) 25 100 

C: Pressure (bar) 400 800 

D: Cooling time (s) 5.5 15 

E: Temperature of molten plastic (°C) 250 280 

F: Screw speed (upm) 90 120 

 

 
Fig. 2. Tornado diagram 
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Consequently, in the second phase of the ex-

perimental part, only four factors are varied. If full 

factorial design were to be chosen again, 24 = 16 

combinations of the experiment (Figure 3) would 

have to be performed, without repetition. By incre-

asing number of repetitions, experimental error is 

minimized. However, experiment efficiency de-

creases.  

 

Fig. 3. Experimental matrix for full factorial 24 design 

If certain high-order interactions between fac-

tors are assumed to be negligible, which can be de-

duced for injection molding process from reviewed 

literature [7], alternative approach might prove to be 

useful. Second part of the experiment is performed 

by varying A-D factors, using a non-standard frac-

tional factorial design. Fractional factorial design 

omits part of experimental combinations. For exam-

ple, 24-1 (Figure 4) omits one half of the experi-

mental combinations that a suitable full factorial de-

sign has. In order to estimate the experimental error, 

for each combination of values the experiment was 

repeated 10 times. A fractional factorial design with 

one central point has been chosen and a total of (24-

1 + 1)∙10 = 90 parts have been molded. If full facto-

rial design were to be used, a total of 170 parts 

would have to be molded. 

 
Fig. 4. Experimental matrix for fractional factorial  

24-1 design 

B. Regression model 

Once the experiment is completed and data set 

is collected according to factorial design, a regres-

sion model can be created. Considering nature of 

injection molding process, high-order interactions 

could be assumed negligible. That said, linear re-

gression model has showed as most adequate to de-

scribe such processes [7, 9]. In a general case, the 

input factor on ij position of the experimental matrix 

shown in Table 1, in the k replication of the experi-

ment, would result in a yijk response, which could be 

analytically determined by the following linear mo-

del: 

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝜀𝑖𝑗𝑘 {
𝑖 = 1,2, … 𝑎
𝑗 = 1,2, … 𝑏
𝑘 = 1,2, … 𝑛

}   

  (1) 

where is: 

μ – total mean effect of the factors, 

τi – effect of the i-level of factor A, 

βi – effect of the j-level of factor B, 

(τβ)ij – effect due to interaction of i-level of 

factor A and j-level of factor B, 

Εij – experimental error. 

General form of regression model for 24 DOE 

is [7]: 

y = β0+β1x1+β2x2+β3x3+β4x4+β12x1x2+β13x1x3+ 

        +β14x1x4+β23x2x3+β24x2x4+β34x3x4+ε  (2) 

There are some terms that can be omitted as 

negligible compared to the others. The error would 

be insignificants and the model would be much sim-

pler. Therefore, a Pareto diagram is plotted based on 

collected data. As Figure 5 shows, the proposed 

model could be simplified as follows: 

y = β0+β1x1+β2x2+β3x3+β4x4+β12x1x2+β14x1x4+ε.  (3) 

 

Fig. 5. Pareto chart 

Values of cofficients expressing factor effect 

are calculated and shown in Table 3. 

Finally, regression model is: 

y = 201.765 – 0.009x1 + 0.0565x2 + 0.1255x3 +  
          + 0.0060x4 – 0.036x1x2 + 0.021x1x4

  (4) 
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T a b l e 3 

Values of coefficients of factor effect 

y
0
 201.765 

β1 – 0.009   

β2 0.056 

β3 0.125 

β4 0.006 

β12 – 0.036   

β14 0.021 

C. Validation 

Prior to final acceptance of the model, addi-

tional validation analyses are in order. Firstly, 

ANOVA analysis is conducted, which decomposes 

total variance into variability occurred due to effect 

of controlled factors and uncontrolled (residual) 

factors. The experiment satisfies all necessary as-

sumptions for carrying out an ANOVA analysis:  

– all measured values have to be normally dis-

tributed (concluded from plotted histogram shown 

in Figure 6),  

– equal variances (or standard deviation val-

ues) among groups (a Cochran’s test for group var-

iance has been conducted and the condition has been 

met),  

– random sampling.  

 

Fig. 6. Histogram of collected data set 

Hence, one-way ANOVA can be performed. 

Total variation or total sum of squares can be 

calculated: 

 𝑆𝑆𝑇 = ∑ ∑ (𝑦𝑖𝑗
𝑛
𝑖=1

𝑘
𝑗=1 −�̅�)2  (5) 

where is: 

n – number of experiment combinations with 

various values of input factors 

k – number of experiment repetitions with cer-

tain constant values of input factors 

yij- – value of response 

�̅� – mean value of the response 

This variation can be divided into two parts: 

 𝑆𝑆𝑇 = 𝑆𝑆𝐺 + 𝑆𝑆𝐸 (6) 

SSG – sum of squares group shows variation 

between different groups, formed by different com-

binations of input factors: 

 𝑆𝑆𝐺 = ∑ (�̅�ј − �̅�)2𝑘
𝑗=1  (7) 

SSE – sum of squared estimate of errors shows 

variation within a group after experiment repetition 

with constant values of input factors: 

 𝑆𝑆𝐸 = ∑ ∑ (𝑦𝑖𝑗
𝑛
𝑖=1

𝑘
𝑗=1 −�̅�ј)

2 (8) 

�̅�j – mean value of the response of j combina-

tion of factors. 

T a b l e  4 

ANOVA table for calculation of Fp 

Variation Parameter 
Degrees of 

freedom 
Mean squares Fp 

Between 

groups 
SSG k-1 𝑀𝑆𝐺 =

𝑆𝑆𝐺

𝑘 − 1
 

𝑀𝑆𝐺

𝑀𝑆𝐸
 

Among a 

group 
SSE n-k 𝑀𝑆𝐸 =

𝑆𝑆𝐸

𝑛 − 𝑘
 

Total SST n-1   

 

If the following condition were to be fulfilled: 

 𝐹𝑝 ≤ 𝐹𝑡𝑎𝑏  (9) 

null hypothesis would have to be accepted. Mean 

values of individual groups are statistically equal. It 

could be concluded that the change of the controlled 

factors does not affect the variation of the analyzed 

response. Planning phase of DOE would have to be 

performed again and certain correction would have 

to be done. Different design and/or input factor 

would have to be used. 

On the contrary, if the following condition 

were to be met: 

 𝐹𝑝 > 𝐹𝑡𝑎𝑏 (10) 
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null hypothesis would have to be rejected. At least 

two individual groups have different mean values. 

It could be concluded that variations of the input 

factors affect the variation of the controlled res-

ponse and therefore defined regression model is 

significant. Further analyses could be continued. 

Calculated value of Fisher’s number Fp after 

conducted ANOVA is 7.5841. Tabular value of this 

number Ftab  has been read from a standard table, 

depending on level of significance, degrees of 

freedom and number of replications [10]. Accepted 

level of significance is α = 0.05. Value of Ftab is 

3.135. It can be concluded that for the analysed 

study case the following condition has been met: 

 𝐹𝑝 > 𝐹𝑡𝑎𝑏   

Therefore, null hypothesis is rejected and the 

regression model and collected data set proved to be 

significant. Non-conformity error due to residual 

factors is insignificant and change of controlled out-

put is caused by the controlled variation of input 

factors. Appropriate DOE design has been used and 

correct influential factors have been chosen in the 

planning phase of DOE. Final analysis before ac-

cepting the model is in order. 

Adequacy analysis of the defined model is the 

final step in the algorithm of activities of DOE. 

Fisher’s lack-of-fit-test is used to determine whet-

her the defined regression model is a true represen-

tation of the process and collected data. Output of 

this analysis is the significance of non-conformity 

error. Every regression model has a predicted ex-

perimental error ε. This error can be expressed like 

a mean square error and exists due to two reasons. 

The first reason is the non-conformity error by re-

sidual factors. The significance of this error has 

proved to be negligible in the previously conducted 

ANOVA analysis. The second reason is the inade-

quacy of the defined regression model. A model 

could be accepted as adequate if and only if mean 

square error due to model inadequacy has a lower 

value than mean square error due to effect of resid-

ual factors, which had previously been proven to be 

negligible in ANOVA. 

Mean square error due to model lack-of-fit can 

be calculated by the following expression: 

 𝑆𝑆𝐿𝑜𝐹 = ∑ ( 𝑦�̅�
𝑛
𝑖=1 −  �̂�𝑖)2  (11) 

Where is: 

𝑦𝑖 ̅ – mean value of the response of i combinati-

on of factors, 

�̂�𝑖 – estimated value of the response of i com-

bination of factors. 

Mean square error due to effect of residual fac-

tors can be calculated by the following expression: 

 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = ∑ ( 𝑦�̅�
𝑛
𝑖=1 −  𝑦𝑖)2  (12) 

where 𝑦𝑖 – response of i combination of factors. 

Value of Fisher’s lack-of-fit number can be 

calculated by the following expression: 

 

𝐹𝑝 =
[∑ ( 𝑦�̅�

𝑛
𝑖=1 −  �̂�𝑖)2]/(𝑘 − 2)

[∑ ( 𝑦�̅�
𝑛
𝑖=1 −  𝑦𝑖)2]/[𝑘 ∙ (𝑛 − 1)]

 = 

=
𝑆𝑆𝐿𝑜𝐹/(𝑘−2)

𝑆𝑆error/[𝑘∙(𝑛−1)]
                       (13) 

Tabular value of Fisher’s lack-of-fit number 

could be read from standard tables, depending on 

the level of significance, degrees of freedom and 

number of replications of the experiment. Accepted 

level of significance is α = 0.05. 

If the following expression were to be true: 

 𝐹𝑝 < 𝐹𝑡𝑎𝑏  (14) 

null hypothesis could be accepted and it could be 

concluded that there is no significant lack-of-fit in 

the model.  

If the following expression were to be true: 

 𝐹𝑝 > 𝐹𝑡𝑎𝑏  (15) 

the null hypothesis would have to be rejected. 

Therefore, the regression model would not be consi-

dered as adequate. There may be some influential 

factors whose effect had not been taken into ac-

count. Changes in the regression model would have 

to be made. 

Calculated value of Fisher’s lack-of-fit number 

is 1.539, and tabular value of this number is 3.135 

[10]. The following condition is fulfilled: 

𝐹𝑝 < 𝐹𝑡𝑎𝑏 

and the regression model (4) is accepted as ad-

equate. Using the model, all responses within the 

specified process window can be calculated. 

D. Nominal values for injection molding 

production process  

DOE has been completed by fulfilling the val-

idation test and the defined model could be used in 

solving the main problem of this study case. Nomi-

nal values of process parameters could be determi-

ned using the defined regression model (4). Accord-

ing to the results (Table 5), it can be concluded that 

nominal values of the process parameters are the 

high levels of all four input factors: 
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y
1
 = 201.765 + 0.0565∙(+1) + 0.1255∙(+1) – 

       – 0.036∙(+1)∙(+1) + 0.021∙(+1)∙(+1) = 
           = 201.9315 mm. 

          T a b l e  5 

Nominal values of process parameters 

Process parameters Nominal values 

Die temperature 90 °C 

Injection speed 100 cm3/s 

Holding pressure 800 bar 

Cooling time 15 s 

CONCLUSION 

Nominal values of process parameters of an in-

jection molding process were defined using a DOE 

methodology. Practical and efficient experiment 

was one of the purposes of this study case. Non-

standard fractional factorial model with one central 

point design was chosen in order to meet the basic 

principles of experimental design, with a minimum 

number of iterations.  Data set was collected and an-

alyzed by statistical methods in order to analytically 

validate the non-standard design. Firstly, a linear 

model with second-order interaction members has 

been created to define the injection process. Only 

most influential interaction factors were included. 

Consequently, ANOVA analysis of the model and 

used data set was conducted. Alternative hypothesis 

was accepted and concluded that mean values from 

at least two individual groups differ significantly. In 

other terms, change of output value is caused by var-

iation of the controlled input factors and the pro-

posed model and collected data are significant. Ap-

propriate DOE design and factors have been chosen 

in the planning phase of DOE. Finally, adequacy of 

the regression model was analysed by carrying out 

Fisher’s lack-of-fit-test. Null hypothesis was ac-

cepted and the model proved to be adequate. All re-

sponses within the specified process window can be 

calculated using the defined significant and ade-

quate regression model. 
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