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Abstract: Astructured approach is fundamental in designing a complex multivariable process, while achiev-
ing specified product quality. Nominal values of process parameters of an injection molding process are defined by
implementing DOE methodology. Optimisation of experimental phase is achieved by progressive information acquir-
ing concerning influential input factors and DOE design. Hence, most influential machine process parameters are varied
using a non-standard fraction-factorial design. A linear regression model with included elements of second order inter-
action is defined based on obtained data. Additional testing of its validation is in order before reaching a final conclu-
sion. Firstly, model significance is tested by conducting an ANOVA analysis. Only significant models prove that DOE
has been adequately planned and factors which affect the controlled output have been chosen. Finally, DOE is com-
pleted by adequacy analysis of the regression model. Lack-of-fit test is chosen to test whether the model is a proper
representation of the real process.
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NNPUMEHA HA HECTAHJAPJAEH DOE U HETOBA BAJIMJALINJA 3A JE@UHUPAIGE
HA HOMHUHAJIHA BPEJHOCTH HA BJIE3HU ITAPAMETPHU 3A IPOU3BOJACTBEH ITPOLIEC

A mncTpackT: [Ipn nu3ajHupare Ha KOMIUIEKCEH IPOU3BOICH MPOLEC KOj 3aBHUCH O] ToJieM Opoj BIIE3HU Bapu-
jabmm, koj Tpeba aa ce KapaKTepu3npa co OAPEIeHO HUBO Ha KBAIUTET, HEOMTXOAHA € IPUMEHA Ha CTPYKTYHpaH MPHUC-
Tan. Bo oBoj Tpyn, DOE meTonoT e rickopucTeH 3a AeduHIpame Ha HOMHHATHUTE BPEIHOCTH HA BIC3HHUTE MPOIIECHU
TapaMeTpH 3a MPOoIIeC Ha HHjEeKIIHOHO BOpU3ryBame. KOoprucTejku I MpOTrpecuBHO CTEKHATHTE CO3HAHU]ja 3a MPOIECOT
BO BpPCKa CO HajBIIMjaTeNHUTE Bie3HH (akTopu u cooaseTHHOT DOE nu3aju koj Ou ce MCKOPUCTWII, U3BPIICHA €
ONTHMU3alMja Ha eKcIepuMeHTanHara ¢asza. CiencTBeHo, Mpy n3Benda Ha eKCIePUMEHTOT, U3BPIISHA € BapHjalnja
caMo Ha HajBIIMjaTeIHUTE BIe3HU (HaKTOPH, KOPUCTEKN HeCTaHAApIeH CKpaTeH (akTopeH nu3ajH. Bp3 6a3a Ha ekcrie-
PUMEHTAJIHO CTEKHATUTE MOJIATOIM TeHEPHPaH € JIMHEApEeH PEerpecuBEeH MOJIEI CO WICHOBM Ha MHTEpaKIHja O BTOP
pex. IIpen na ce noHece GUHANEH 3aKIIy4OK, HAIPaBEHH CE JOMOJIHUTENIHN aHAIN3H 3a BaJlJaluja Ha Mozenot. Haj-
mpBo, peky AHOBA ananu3a TecTupana ¢ 3HayajHOCTa Ha PErpecuBHUOT Mozed. CaMo 3HaYacH MOJIEN MOTBPAYBa
neka (azara Ha muraHupame Ha DOE Ouia cripaBHO H3BpIIeHa U H30paHKTE BIE3HHU (haKTOPH MPEAU3BUKYBAaT Bapuja-
¥ja Ha KOHTpoaupaHuoT o3uB. Koneuno, DOE e koMIuieTipaH co aHain3a Ha afekBaTHOCT Ha moenoT. Lack-of-fit
TECTOT MOKaXyBa JAJIM MOJEJIOT PEATHO TH MPETCTaBYBa eKCIEPUMEHTAIHO CTEKHATUTE MOAATOLIH.

Kiyunn 360poBu: q13ajH Ha SKCIIEPUMEHTH; HECTAHAAP/ICH CKpaTeH (HaKTOPEH IU3ajH; WHjeKIIMOHO BOP3UTYBAHbE;
BaJIMAALMja HA MOJIEIL.

INTRODUCTION

Implementation of design of experiments
(DOE) methodology at the earliest, trial stages of
the development cycle of a new process, sets a solid
foundation for productive and quality serial produc-
tion process. This especially applies to multivaria-
ble production processes where part quality varies
due to various controlled and uncontrolled factors.

The essence of DOE is its planning phase.
Only properly planned DOE leads to efficient ex-
periment and applicable data. Ideal planning phase
of DOE would result in minimal number of experi-
mental iterations, while including all influential in-
put factors and minimizing the experimental error.
Consequently, relevant data would be collected and
analysed by statistical methods which would enable
development of a reliable model-based process.
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A method to determine the minimal number of
experimental iterations was proposed by MKS [1].
The study presents that fractional factorial model
shows approximately same results as full factorial
model. Ten input factors are varied. In practise this
would cause decrease of experiment efficiency.
Also, experimental error could not be estimated be-
cause experiment repetition is not included.

Crucial part of the planning phase is choice of
input factors and their levels. Moreover, signifi-
cance of collected data is directly predetermined by
the selected DOE design. In order to simplify plan-
ning of DOE, Andrisano et al [2] propose an
algorithm which determines optimal set of process
parameters for given product requirements. How-
ever, method which determines proper DOE design
is not included. S. Rajalingam et al [3] use three in-
put factors with repetition. Abohashima et al [4] use
four input factors with repetition to determine the
influence of chosen factors on attributive characte-
ristics. Both use a full factorial design. Effects of
factors are calculated and plotted in Minitab soft-
ware, but models are not defined.

After experiment performance, data analysis is
in order. Statistical methods are used in transform-
ing gained data into useful information. Output of
DOE is a regressive model which represents the real
process and identifies change in controlled parame-
ter caused by variation of input factors. V. Garcia et
al [5] predict product quality in a tubing extrusion
process using a regression model. The data set is ob-
tained from a manufacturing company, collected
among a longer production period. One of the many
benefits of using DOE methodology is that relevant
data set could be collected in only a few hours.
Choice of optimal type of a regression model de-
pends on the nature of the process itself. Pan et al
[6] present comparison between different types of
regression models. Kulkarni [7] shows that a linear
regression model which involves first-order in-
teraction members is the most adequate one to de-
scribe an injection molding process.

Review of relevant literature shows that while
individual stages of DOE are analyzed in detail,
elaborated study of all stages used in solving a prac-
tical problem is not included. Proposed paper uses
detailed analysis of all DOE stages in order to de-
termine nominal values of process parameters of an
injection molding process. Furthermore, it uses a
non-standard DOE design which increases effici-
ency of the experimental phase, while including the
effect of all influential factors. Based on acquired
data, a linear regression model which involves first-

order interaction members is defined. Prior to final
acceptance of the regression model, additional
analyses for its validation are conducted. Firstly,
model significance is conducted through ANOVA
analysis. ANOVA decomposes total variance into
variability occurred under the influence of control-
led factors and uncontrolled (residual) factors [8].
Only if a model proves to be significant, one may
accept obtained data set of the experimental phase
and continue further analysis. Finally, DOE is
completed by conducting an analysis of adequacy of
the regression model. Lack-of-fit test is used to test
whether the model is a proper representation of the
real process and collected data. Additionally, an
Excel template has been developed for simple and
fast future analysis of the any generated data set
from DOE. A standard statistical software performs
black-box calculations and only generates required
output data. Using the proposed template, all the
user would have to do is input the collected data and
a mathematical model would be generated. Its signi-
ficance and adequacy are tested as well, and results
are printed instantly on screen.

METHODOLOGY

A case study is analysed. The flow of activities
is shown in Figure 1. The purposes of this study are:

1. examination of correlation between the in-
put machine process parameters of an injection
molding process and critical for assembly dimen-
sion of a molded part

2. performing an efficient DOE

3. defining a regression model

4. validation of planning phase of DOE
5. validation of the regression model

6. defining nominal values for the injection
molding production process.

While variable characteristics of the molded
part are the controlled output, attributive character-
istics must not be impaired.

An alternative approach concerning choice of
DOE design is proposed. Therefore, the experi-
mental part of this study case is performed in two
phases. The first phase examines influence of six
factors at two levels using a standard full factorial
DOE design. Input factors and their levels have
been selected based on empirical experience and re-
search [8]. Factor effects are estimated and only the
most influential ones are used as input factors in
phase 2 of the experimental stage.

Mech. Eng. Sci. Journal.38 (2), 127-134 (2020)
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Design of experiments

A B C.DEF
mput facters at two
levels

Expenmental stage
Phase 1

Standard full factorial
design

Four most
influential factors
at two levels

Expenmental stage
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Non-standard

fractional factonal

design with one central
point

Linear

regression model

| with first-order
interaction

members

Model is not
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Model is not
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Lack-of-fit test

Model is adequate

Fig. 1. Algorithm of activities for the case study acquired data
of the performed experiment, a linear regression model with
included elements of second-order interaction is defined

Four factors are varied using a non-standard
fractional-factorial DOE design with one central
point. Based on DOE could be completed only if
validation tests are satisfied. Firstly, ANOVA ana-
lysis is carried out. ANOVA makes a direct

Mauwi. unore. nayu. ciiue. 38 (2), 127-134 (2020)

comparison between the estimated change in the
output due to variation of the controlled input fac-
tors and change in the output as a result to experi-
mental error. Basically, variations between formed
groups in DOE and within groups are compared. In
this paper, ANOVA is used to test whether appro-
priate DOE design and factors have been chosen in
the planning phase of DOE. Consequently, two
hypotheses are set:

Ho: 11 = w2 = us mean values of individual
groups are statistically equal.

Ha: at least two individual groups have differ-
ent mean values.

If the null hypothesis were to be met, it could
be concluded that the change of the controlled
factors does not affect the variation of the analyzed
response. The change of the output is caused by
uncontrolled factors. The collected data set is not
statistically significant due to improper DOE design
or choice of factors. Experimental phase would have
to be repeated, using different design and/or factors.

On the other hand, if the alternative hypothesis
were to be accepted, the variations of the input fac-
tors affect the variation of the controlled response.
This proves significance of the regression model. It
could be concluded that planing phase of DOE was
properly done, concerning chosen design, factors
and their levels. Once ANOVA test is fullfilled,
DOE could proceed forward.

That one may properly complete DOE, vali-
dation test of the regression model has to be
fullfilled. Fisher’s lack-of-fit test is conducted in
order to determine significance of non-conformity
error. Basically, the test shows whether the regres-
sion model is a true representation of the collected
data set of DOE. Therefore, again, two hypotheses
are set:

Ho: there is no significant lack-of-fit.
H,: there is a significant lack-of-fit.

If the null hypothesis were to be fullfilled, the
regression model could be accepted as adequate,
because there is not a significant non-conformity
error due to lack-of-fit. DOE could be completed
and the model could be used in solving the main
problem. Nominal values for process parameters
could be deteremined using the defined regression
model.

If the alternative hypothesis were to be met, the
regression model is not adequate. There may be
some influential factors whose effect had not been
taken into account. Changes in the regression model
are in order.
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DESIGN OF EXPERIMENSTS (DOE)

A. Planning phase of DOE

Prior to experiment realization, all stages of its
planning phase have to be properly completed. In-
put factors and their levels are chosen based on re-
viewed literature and past experience concerning
the nature of the process, used granule and geometry
of the molded part. The controlled output is a linear
dimension specified in the technical documentation
of the part, and its value is 209£0.46 mm.

Choice of DOE design is fundamental in de-
veloping an efficient experiment and collecting rel-
evant data. There are various types of experimental
design. Most commonly used, one in DOE is facto-
rial design, because it the only type of experimental
design that can detect the effect of mutual interac-
tion of factors [9]. Most experiments require analy-
sis of the effects of several factors at the same time.
All types of factorial designs can be divided in two
large groups:

— standard DOE design or full factorial design

— non-standard DOE design or fraction-facto-
rial design.

Standard DOE design can be defined as an ex-
periment which investigates all possible combina-
tions of factors. Table 1 shows a general experi-
mental matrix for full factorial design with two fac-
tors A (a levels) and B (b levels).

First part of experimental phase is performed
according to full factorial design. Based on research
and experience, six most influential machine pro-
cess parameters (Table 2) are chosen and varied
within their process window.

There are up to four process parameters that
will cause a significant variation in dimensions of a
molded part [7]. Having in mind that practical and
efficient DOE is one of the purposes of this study
case, while enough replications to minimize the ex-
perimental error are performed, it is necessary to se-
lect only the most influential factors and vary them.
In order to determine the four most influential pro-
cess parameters, a full factorial 2° standard design
of DOE is performed and obtained data set is ana-
lyzed using a statistical tool — Tornado diagram
(Figure 2).

A total of 26 = 64 (2", 2 — number of levels for
each factor, k — number of factors varied) combina-
tions of the experiment were performed, without
repetition. Temperature of molten plastic (E) and
screw speed (F) are omitted in further analysis,

because full factorial DOE proved them to be

factors with lowest influence.

Table 1

General experimental matrix
for full factorial design

‘ FACTOR B
S 1 2 b
A
c M Y111, Y112, Y121, Y122, Yib1, Yib2,
T ..oy Yiin -ees Yi2n --e5 Yibn
O 2 Y211, Y212, Y221, Y222, Yab1, Yab2,
R .evs Y21In, ..oy Yoon “evs Y2bn
ANM... ...
q Yail Yo, Ve, Yaz, Yab1, yaby,
...y Yaln ...y Ya2n ..., Yabn
Table 2
High and low levels of input parameters
LEVELS
PARAMETER = +
A: Mold temperature (°C) 50 90
B: Injection speed (cm?/s) 25 100
C: Pressure (bar) 400 800
D: Cooling time (s) 55 15
E: Temperature of molten plastic (°C) 250 280
F: Screw speed (upm) 90 120
023
022
021
02
019
0.8
017
016
015
014
013
012
;i
o
g oy
006
005
004
003
002 .
"0 =

001 Nold  Injecionspeed  Holding €
003 temperafure pressute

e Temperature Screw speed
of molten
plastic

PROCESS PARAMETERS

Fig. 2. Tornado diagram
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Consequently, in the second phase of the ex-
perimental part, only four factors are varied. If full
factorial design were to be chosen again, 2* = 16
combinations of the experiment (Figure 3) would
have to be performed, without repetition. By incre-
asing number of repetitions, experimental error is
minimized. However, experiment efficiency de-
creases.

A B AB ( AC  BC ABC D AD BD ABD €D ACD BCD ABCD

0 + + + +

15 bed + + i . + . i
16 abed + + + B . . B + + + - + - +

Fig. 3. Experimental matrix for full factorial 2* design

If certain high-order interactions between fac-
tors are assumed to be negligible, which can be de-
duced for injection molding process from reviewed
literature [7], alternative approach might prove to be
useful. Second part of the experiment is performed
by varying A-D factors, using a non-standard frac-
tional factorial design. Fractional factorial design
omits part of experimental combinations. For exam-
ple, 241 (Figure 4) omits one half of the experi-
mental combinations that a suitable full factorial de-
sign has. In order to estimate the experimental error,
for each combination of values the experiment was
repeated 10 times. A fractional factorial design with
one central point has been chosen and a total of (2*
1+ 1)-10 = 90 parts have been molded. If full facto-
rial design were to be used, a total of 170 parts
would have to be molded.

~
=
~
.
=
o=
o
=
S
=
=

a + + - - - - + +
b + - + - - + - +
c + - - + + - - +
abc + + + + + + + +
ab + + + - + - - -
ac + + - + - + - -
be + - + + - - + -
(1) + - - - + + + -
Fig. 4. Experimental matrix for fractional factorial
241 design

B. Regression model

Once the experiment is completed and data set
is collected according to factorial design, a regres-
sion model can be created. Considering nature of
injection molding process, high-order interactions

Maw. undic. nayu. ciuc. 38 (2), 127-134 (2020)

could be assumed negligible. That said, linear re-
gression model has showed as most adequate to de-
scribe such processes [7, 9]. In a general case, the
input factor on ij position of the experimental matrix
shown in Table 1, in the k replication of the experi-
ment, would result in a yij response, which could be
analytically determined by the following linear mo-
del:
i=12,..a
Vij =u+ti+Bj+ @B+ & {j =1,2, b}
k=12,..n
1)
where is:
u — total mean effect of the factors,
7i — effect of the i-level of factor A,
pi — effect of the j-level of factor B,

(zp)ij — effect due to interaction of i-level of
factor A and j-level of factor B,

Eij — experimental error.
General form of regression model for 24 DOE
is [7]:
v = Potfixitfoxatfaxstfaxatfioxixatfiaxixst
+B1ax1xatfosxoxstfaaxoxatfraxsxate (2)

There are some terms that can be omitted as
negligible compared to the others. The error would
be insignificants and the model would be much sim-
pler. Therefore, a Pareto diagram is plotted based on
collected data. As Figure 5 shows, the proposed
model could be simplified as follows:

¥ = potpixitfaxatfaxstfaxatfroxixatfraxixate.  (3)

Pareto chart
E 05 1000
é: 90.0 $
= 04 800
é 70.0 §
8 03 600 &
= =
= 500 &
by w
B 02 400 >
S E
Z
g 300 <
= 01 20.0 g
% 100 ©
oy -— 00
C B AB AD A D
INPUT FACTOR

Fig. 5. Pareto chart

Values of cofficients expressing factor effect
are calculated and shown in Table 3.

Finally, regression model is:
»=201.765-0.009x; + 0.0565x>+ 0.1255x3 +

+0.0060x4— 0.036x1x2 + 0.02 Lx1.x4
(4)
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Table3

Values of coefficients of factor effect

Yo 201.765
B ~0.009
B 0.056
B3 0.125
Pa 0.006
P2 —0.036
Pia 0.021
C. Validation

Prior to final acceptance of the model, addi-
tional validation analyses are in order. Firstly,
ANOVA analysis is conducted, which decomposes
total variance into variability occurred due to effect
of controlled factors and uncontrolled (residual)
factors. The experiment satisfies all necessary as-
sumptions for carrying out an ANOVA analysis:

—all measured values have to be normally dis-
tributed (concluded from plotted histogram shown
in Figure 6),

— equal variances (or standard deviation val-
ues) among groups (a Cochran’s test for group var-
iance has been conducted and the condition has been
met),

— random sampling.

NUMBER OF PARTS
S =N =) =

[}

0
201.566 201.617 201.668 201.719 201.770 201.821 201.872 201.923 201.974 202.025
MEASURED DIMENSION, mm

Fig. 6. Histogram of collected data set

Hence, one-way ANOVA can be performed.

Total variation or total sum of squares can be
calculated:

SST = ¥¥_ X1 (vij —)? (%)

where is:

n — number of experiment combinations with
various values of input factors

k — number of experiment repetitions with cer-
tain constant values of input factors

yii-— value of response
y — mean value of the response

This variation can be divided into two parts:
SST = SSG + SSE (6)

SSG — sum of squares group shows variation
between different groups, formed by different com-
binations of input factors:

SSG =¥k (5 - 7)* @)

SSE - sum of squared estimate of errors shows
variation within a group after experiment repetition
with constant values of input factors:

SSE = ¥X_i ¥ (i —F)° (8)

yj — mean value of the response of j combina-
tion of factors.

Table 4
ANOVA table for calculation of F,

Variation  Parameter DIE)72E5 B Mean squares Fp
freedom

Between SSG
SSG k-1 =

groups MSG k-1 MSG

Among a SSE  MSE
SSE n-k MSE = ——

group 5 n—k

Total SST n-1

If the following condition were to be fulfilled:
Fp = Ftab (9)

null hypothesis would have to be accepted. Mean
values of individual groups are statistically equal. It
could be concluded that the change of the controlled
factors does not affect the variation of the analyzed
response. Planning phase of DOE would have to be
performed again and certain correction would have
to be done. Different design and/or input factor
would have to be used.

On the contrary, if the following condition
were to be met:

E, > Feap (20)

Mech. Eng. Sci. Journal.38 (2), 127-134 (2020)
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null hypothesis would have to be rejected. At least
two individual groups have different mean values.
It could be concluded that variations of the input
factors affect the variation of the controlled res-
ponse and therefore defined regression model is
significant. Further analyses could be continued.

Calculated value of Fisher’s number F, after
conducted ANOVA is 7.5841. Tabular value of this
number Fwp has been read from a standard table,
depending on level of significance, degrees of
freedom and number of replications [10]. Accepted
level of significance is o = 0.05. Value of Fp is
3.135. It can be concluded that for the analysed
study case the following condition has been met:

E, > Fiap

Therefore, null hypothesis is rejected and the
regression model and collected data set proved to be
significant. Non-conformity error due to residual
factors is insignificant and change of controlled out-
put is caused by the controlled variation of input
factors. Appropriate DOE design has been used and
correct influential factors have been chosen in the
planning phase of DOE. Final analysis before ac-
cepting the model is in order.

Adequacy analysis of the defined model is the
final step in the algorithm of activities of DOE.
Fisher’s lack-of-fit-test is used to determine whet-
her the defined regression model is a true represen-
tation of the process and collected data. Output of
this analysis is the significance of non-conformity
error. Every regression model has a predicted ex-
perimental error e. This error can be expressed like
a mean square error and exists due to two reasons.
The first reason is the non-conformity error by re-
sidual factors. The significance of this error has
proved to be negligible in the previously conducted
ANOVA analysis. The second reason is the inade-
guacy of the defined regression model. A model
could be accepted as adequate if and only if mean
square error due to model inadequacy has a lower
value than mean square error due to effect of resid-
ual factors, which had previously been proven to be
negligible in ANOVA.

Mean square error due to model lack-of-fit can
be calculated by the following expression:

SSLOF = Z?=1( = 37i)2 (11)
Where is:

¥, — mean value of the response of i combinati-
on of factors,

y; — estimated value of the response of i com-
bination of factors.

Maw. undic. nayu. ciuc. 38 (2), 127-134 (2020)

Mean square error due to effect of residual fac-
tors can be calculated by the following expression:

SSerror = 211'1=1( V= yi)z (12)

where y; — response of i combination of factors.

Value of Fisher’s lack-of-fit number can be
calculated by the following expression:

oo BLGi= 908/k=2)
PR = )P/ k- (= 1)]
_ _ SSwor/(k=2)
SSerror/[k:(n—1)]
Tabular value of Fisher’s lack-of-fit number
could be read from standard tables, depending on
the level of significance, degrees of freedom and

number of replications of the experiment. Accepted
level of significance is a = 0.05.

If the following expression were to be true:
F, < Feap (14)

(13)

null hypothesis could be accepted and it could be
concluded that there is no significant lack-of-fit in
the model.

If the following expression were to be true:
E, > Fiap (15)

the null hypothesis would have to be rejected.
Therefore, the regression model would not be consi-
dered as adequate. There may be some influential
factors whose effect had not been taken into ac-
count. Changes in the regression model would have
to be made.

Calculated value of Fisher’s lack-of-fit number
is 1.539, and tabular value of this number is 3.135
[10]. The following condition is fulfilled:

E, < Fiap

and the regression model (4) is accepted as ad-
equate. Using the model, all responses within the
specified process window can be calculated.

D. Nominal values for injection molding
production process

DOE has been completed by fulfilling the val-
idation test and the defined model could be used in
solving the main problem of this study case. Nomi-
nal values of process parameters could be determi-
ned using the defined regression model (4). Accord-
ing to the results (Table 5), it can be concluded that
nominal values of the process parameters are the
high levels of all four input factors:
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¥, =201.765+0.0565-(+1) +0.1255-(+1) -
—0.036:(+1)-(+1) + 0.021-(+1)-(+1) =
=201.9315 mm.

Table 5

Nominal values of process parameters

Process parameters Nominal values

Die temperature 90 °C
Injection speed 100 cmd/s
Holding pressure 800 bar
Cooling time 15s
CONCLUSION

Nominal values of process parameters of an in-
jection molding process were defined using a DOE
methodology. Practical and efficient experiment
was one of the purposes of this study case. Non-
standard fractional factorial model with one central
point design was chosen in order to meet the basic
principles of experimental design, with a minimum
number of iterations. Data set was collected and an-
alyzed by statistical methods in order to analytically
validate the non-standard design. Firstly, a linear
model with second-order interaction members has
been created to define the injection process. Only
most influential interaction factors were included.
Consequently, ANOVA analysis of the model and
used data set was conducted. Alternative hypothesis
was accepted and concluded that mean values from
at least two individual groups differ significantly. In
other terms, change of output value is caused by var-
iation of the controlled input factors and the pro-
posed model and collected data are significant. Ap-
propriate DOE design and factors have been chosen
in the planning phase of DOE. Finally, adequacy of
the regression model was analysed by carrying out
Fisher’s lack-of-fit-test. Null hypothesis was ac-
cepted and the model proved to be adequate. All re-
sponses within the specified process window can be
calculated using the defined significant and ade-
guate regression model.
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