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A b s t r a c t: Industrial robot control, often restricted by proprietary systems like KUKA Robot Language, 

presents a challenge for advanced scientific research and intuitive programming. This paper introduces a novel, low-

cost framework for Intelligent Control of KUKA Robotic Systems using AI-Driven Human Motion Tracking to facili-

tate kinesthetic teaching. The system integrates the MediaPipe Hands Deep Learning model for real-time 3D hand 

landmark tracking with a custom PyOpenShowVar/KUKAVARPROXY control middleware, enabling soft real-time 

command transmission to a KUKA KR 16-2. The framework achieved 97.3% accuracy for discrete gesture commands 

and used a Direct Landmark Differencing approach to provide intuitive, simultaneous control over 3D joint-space 

movement. While exhibiting 200ms soft real-time overhead, the performance is highly suitable for path teaching and 

signif-icantly lowers the technical barrier for human-robot collaboration and flexible manufacturing. 
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КОНТРОЛА НА РОБОТСКИТЕ СИСТЕМИ KUKA ЗАСНОВАНА НА СЛЕДЕЊЕ  

НА ЧОВЕЧКОТО ДВИЖЕЊЕ СО ПРИМЕНА НА ВЕШТАЧКАТА ИНТЕЛИГЕНЦИЈА 

А п с т р а к т: Контролата на индустриските роботи, која често е ограничена од сопствен програмски 

јазик како што е KUKA Robot Language, претставува сериозен предизвик за напредни научни истражувања и 

за развој на интуитивни методи на програмирање. Овој труд претставува иновативна и економична рамка за 

интелигентна контрола на роботските системи KUKA, која користи вештачка интелигенција и следење на 

човечко движење со цел да се овозможи кинестетичко учење. Развиениот систем го комбинира длабоконеврон-

скиот модел MediaPipe Hands за следење на тридимензионални координати на движењата на раката во реално 

време, со сопствено развиен посреднички слој за комуникација PyOpenShowVar/KUKAVARPROXY, кој овоз-

можува реалновременска размена на команди со роботот KUKA KR 16-2. Предложената рамка постигнува 

97,3% точност при препознавање поединечни гест-команди, со што овозможува интуитивна и истовремена 

контрола на движењата во тридимензионален простор. Покрај регистрираното доцнење од околу 200 ms во 

реално време, постигнатите перформанси се целосно соодветни за учење на патеки и значително ја намалуваат 

техничката бариера за колаборацијата човек-робот и флексибилно производство. 

Клучни зборови: KUKA манипулатор; компјутерска визија; контрола со вештачка интелигенција;  

контрола во реално време 

1. INTRODUCTION 

Industrial manipulators, such as those manu-

factured by KUKA, are the cornerstone of modern 

automation, characterized by their precision, robust-

ness, and speed. However, their primary control 

architecture is designed for industrial efficiency and 

safety, often relying on proprietary, text-based lan-

guages like the KUKA Robot Language (KRL). 

While suitable for repetitive, pre-programmed man-

ufacturing tasks, this closed-system design presents 

significant barriers to scientific research [1, 2]. Re-

searchers often seek maximum control, low-level 

access to variables, and the ability to integrate 
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advanced mathematics or third-party libraries-func-

tionalities that KRL inherently limits. Consequent-

ly, fully exploiting the mechanical capabilities of 

high-performance industrial platforms in scientific 

and novel control contexts is often impossible. 

To overcome the limitations imposed by in-

ustrial controllers, the robotics research community 

utilizes various middleware and communication in-

terfaces. This is crucial for implementing advanced 

control methodologies, such as complex Human-

Robot Interaction (HRI) schemes or Learning from 

Demonstration (LfD). Specifically, our approach 

leverages an open communication interface that not 

only grants soft real-time access to robot state and 

control variables but also includes a Python class 

capable of generating KRL source files (.src) of-

fline. This feature allows users to program complex 

robot paths in a flexible, high-level environment 

like Python, completely eliminating the need for 

specialized KRL knowledge and significantly re-

ducing programming time. 

Building on this flexible control foundation, 

this paper presents a novel framework for Intelligent 

Control of KUKA Robotic Systems Based on AI-

Driven Human Motion Tracking. The core of the 

system utilizes Deep Learning techniques for robust 

Hand Gesture Recognition, capturing the operator's 

movements and translating them into intuitive tra-

jectory commands. This AI-driven approach dras-

tically simplifies the teaching process by translating 

intuitive human motion directly into executable 

robot code, saving considerable time and lowering 

the technical expertise barrier for operators. This 

research aims to achieve a viable and efficient 

method for kinesthetic teaching that allows non-

expert users to program complex tasks. By seam-

lessly coupling cutting-edgeAI-based perception 

with an agile control interface, we demonstrate the 

potential of open control methods to enable flexible 

manufacturing and truly intuitive human-robot 

collaboration. 

Prior research in robotics has addressed the 

challenges of flexible control through various ap-

proaches. Regarding industrial system accessibility, 

several works have proposed software interfaces 

and middleware to unlock low-level control of 

platforms like KUKA, attempting to bridge the gap 

between proprietary KRL and external program-

ming environments [3, 4]. Crucially, traditional on-

line communication with KUKA robots is funda-

mentally limited to additional packages like KUKA. 

RobotSensorInterface and KUKA. Ethernet KRL-

XML, which restrict the I/O capacity and the com-

plexity of the external control loop [5]. Concur-

rently, the HRI-field has advanced through Learn-

ing from Demonstration (LfD) [6], and more recent-

ly, Deep Learning (DL) techniques have demon-

strated exceptional performance in real-time vision 

tasks for hand gesture and human pose estimation [, 

8, 9]. While these three areas – open control inter-

faces, DL – based perception, and LfD – have been 

explored individually, a unified framework that 

integrate a high-fidelity, DL – driven gesture system 

with a flexible, soft real-time KUKA – control 

architecture remains a critical need. 

The key contributions of this work are: (1) The 

successful integration of a DL-based hand gesture 

recognition system with an external control 

interface to realize a stable and responsive soft real-

time control loop for the KUKA controller. (2) The 

development of a precise control and mapping 

strategy that translates gesture and pose data into 

safe and stable KUKA joint space trajectories. (3) 

Comprehensive experimental validation demon-

strates the accuracy, low latency, and ease-of-use of 

the proposed intelligent control framework for com-

plex collaborative tasks, enabled by our flexible, 

middleware-based architecture. The remainder of 

this paper is organized as follows: Section 2 details 

the system architecture, hardware components, 

software environments, and the connectivity setup. 

Secti presents the experimental setup. Section 4 dis-

cusses the results and performance evaluation. Fi-

nally, Section 5 offers the conclusion and future 

work. 

2. SYSTEM ARCHITECTURE 

System architecture overview 

The proposed intelligent control system oper-

ates on a distributed architecture designed to facili-

tate intuitive human interaction with industrial ro-

bots. As illustrated in Figure 1, the framework com-

prises three primary interconnected layers: the hu-

man operator providing intuitive inputs, an external 

laptop/PC responsible for integrated perception and 

control logic, and the KUKA robot controller (KRC) 

with its attached KUKA KR 16-2 manipulator for 

physical task execution. The system uses DL tech-

niques for robust hand gesture recognition and a 

custom middleware for flexible robot control and 

offline program generation. 
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Fig 1. System architecture of AI-driven KUKA framework 

Hardware components 

The control framework utilizes three core 

hardware elements: the industrial manipulator, the 

robot controller, and the perception system. 

KUKA KR 16-2 manipulator and controller 

The core execution platform for this system is 

the KUKA KR 16-2 industrial robot, a 6-axis artic-

ulated manipulator known for its payload capacity 

(16 kg) and extensive reach (1610 mm). This model 

is representative of common industrial applications, 

providing a robust platform for testing the devel-

oped control middleware. The robot is managed by 

a KUKA robot controller (KRC), typically the KR 

C4 model, running the proprietary KUKA operating 

system with a soft real-time kernel. The KRC han-

dles all kinematics, safety functions, and motion 

planning. External commands are directed to the 

controller via a dedicated network interface, bypass-

ing the standard teach pendant programming flow to 

allow for external influence over joint movements 

and program execution. 

Integrated perception system 

The human-robot interaction is driven by an 

integrated visual perception system. This consists of 

the integrated camera on the external laptop/PC, 

which provides a live RGB video stream of the hu-

man operator's workspace. The camera's feed is pro-

cessed directly by the external laptop/PC, which 

hosts the DL-models. This integrated setup offers a 

portable and cost-effective solution for motion cap-

ture, eliminating the need for dedicated, high-cost 

external depth sensors or specialized Vicon systems. 

The primary function of this hardware is to reliably 

deliver video data at a sufficient frame rate to the 

software layer, ensuring low-latency gesture recog-

nition for the soft real-time control loop. 

Software environment and middleware 

The control and perception systems are 

established across three distinct software layers: the 

deep learning stack for perception, the custom 

Python middleware for control logic, and the KRL 

environment on the robot controller. Figure 2 shows 

the detailed data flow. 
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Fig 2. Detailed data flow 

Control middleware: KUKAVARPROXY  

and PyOpenShowVar 

The core of the system's external control capa-

bility relies on a client-server architecture designed 

to bypass the limitations of standard KRL program-

ming. On the KUKA robot controller (KRC) side, 

the open-source KUKAVARPROXY acts as a 

server. This dedicated application runs on the 

KRC’s Windows environment and establishes a 

TCP/IP socket connection, typically listening on 

Port 7000. Its fundamental role is to provide a 

channel for remote programs to read and write 

global KRL variables (such as $OV\_PRO or 

dedicated position variables) by implementing the 

OpenShowVar protocol over the network. 

On the external laptop/PC side, the communi-

cation client is the PyOpenShowVar library. This 

Python package handles the low-level network in-

terface, translating the high-level control decisions 

from the gesture recognition system into the specific 

messaging format required by the OpenShowVar 

protocol. 

The use of this client-server coupling is essen-

tial for achieving soft real-time control and is specif-

ically leveraged for: 

– Real-time Joint Overrides: The Python script 

uses PyOpenShowVar to repeatedly write calcula-

ted joint angle increments into pre-declared global 

KRL variables. A parallel KRL program running on 

the KRC continuously reads these variables to 

modify its current motion cycle, effectively en-

abling the external PC to directly influence the 

robot’s trajectory based on human input. 

– State Feedback: The library is used to read 

back system variables, such as the actual joint 

position ($AXIS_ACT), closing the control loop 

and allowing the Python middleware to maintain an 

accurate model of the robot's state. 

– Programmatic Control: PyOpenShowVar 

allows for remote manipulation of program flow 

flags and system variables, enabling the user to start, 

stop, or reset the main KRL execution program 

based on a recognized hand gesture. 

This implementation allows the Python mid-

dleware to exert granular control over the robot's 

motion through variable manipulation, which is the 

foundational element enabling the AI-driven kines-

thetic teaching framework. 

3. EXPERIMENTAL SETUP 

Description of experimental environment 

The experimental validation of the AI-driven 

control framework was conducted using a KUKA KR 

16-2 industrial manipulator controlled by a KRC4 
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controller. The robot was secured to a standard in-

dustrial floor mount within a defined safety cage 

area. 

The perception system utilized the integrated 

camera on the external laptop/PC, which was posi-

tioned approximately 1 meter from the human oper-

ator. This arrangement ensured the camera main-

tained a full-frame view of the operators dominant 

hand, covering the entire operational range used for 

gesture control. The robot's primary workspace was 

configured to be within a safe collaborative zone, 

and the KRC4 controller and the external laptop/PC 

were connected via a dedicated Ethernet cable using 

a static IP configuration for the stable TCP/IP con-

nection. 

The experimental validation of the AI-driven 

control framework was conducted using a KUKAKR 

16-2 industrial manipulator controlled by a KRC4 

Controller. The robot was secured to a standard 

industrial floor mount within a defined safety cage 

area.  

The perception system utilized the integrated 

camera on the external laptop/PC, which was posi-

tioned approximately 1 meter from the human oper-

ator. This arrangement ensured the camera main-

tained a full-frame view of the operators dominant 

hand, covering the entire operational range used for 

gesture control. The robot's primary workspace was 

configured to be within a safe collaborative zone, 

and the KRC4 controller and the external laptop/PC 

were connected via a dedicated Ethernet cable using 

a static IP configuration for the stable TCP/IP con-

nection. 

Case study I: Discrete position selection 

The first case study focuses on validating the 

discrete gesture recognition capability for fast, pro-

grammatic robot control. The system was tasked 

with recognizing the number of fingers the operator 

held up (one, two, or three). Based on the recog-

nized count, the robot was commanded to move to 

a corresponding, pre-determined target position. For 

example, holding up one finger triggered movement 

to Position One, two fingers to Position Two, and 

three fingers to Position Three. This test evaluates 

the overall latency and reliability of the perception-

to-program execution sequence. 

Case study II: Continuous control with tracking 

The second, more complex case study vali-

dates the continuous control and mapping capabil-

ity. This involved recognizing two primary opera-

tional states: 

1. Open hand (Continuous control): When the 

hand was open, the system activated the propor-

tional control mapping, allowing the robot's joints 

to follow the hand's movements. An open hand 

moving left, for instance, resulted in the appropriate 

joint movements toward the left. 

2. Depth control: The system also utilized the 

distance of the hand from the camera (depth, z-axis) 

to control the robot. Moving the open hand toward 

or backward from the camera translated into corre-

sponding movements along the robot's principal 

axis, enabling three-dimensional control over the 

manipulator's End-Effector or specific joints. 

Ai model for hand motion tracking 

The core of the perception system is a robust, 

low-latency Deep Learning model responsible for 

tracking the operator's hand motion in real-time, de-

tecting gestures, and extracting both fine-grained 

landmarks and categorical gesture IDs. 

Dataset and preprocessing 

The system utilizes the MediaPipe Hands 

framework, which employs a highly optimized, pre-

trained model for real-time hand detection and 

tracking. The input video stream from the integrated 

camera is preprocessed by MediaPipe to the first 

identify the hand's Region of Interest (ROI) and then 

predict 21 3D hand landmarks (normalized Px, Py 

and Pz coordinates). The z coordinate provides rel-

ative depth information crucial for Case study II. 

The classification of the discrete gestures (0, 1, 2, or 

3 fingers) for Case study I was handled by a light-

weight classifier built on top of the raw landmark 

data, which relied on geometric features such as the 

distance and relative position between fingertip and 

joint landmarks. 

Model selection and training process 

Model selection: The system leverages the pre-

trained, pipeline-based model from MediaPipe 

Hands. This architecture was chosen for its optimal 

balance between accuracy and extremely high infer-

ence speed, which is a non-negotiable requirement 

for soft real-time robot control. The pipeline con-

sists of a lightweight Palm Detector followed by a 

dedicated Hand Landmark Model. This design al-

lows the system to achieve an average processing 
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rate of approximately 30 Frames Per Second (FPS) 

on the external PC, minimizing overall system la-

tency. 

Training process: The underlying hand detec-

tion and landmark models are pre-trained. The nec-

essary "training" effort focused on system calibra-

tion – empirically tuning the proportional scaling 

factor k and the coordinate mapping boundaries –

and on the lightweight gesture classifier, which was 

trained using a small, self-collected dataset to vali-

date the geometric thresholds used for the finger-

counting task (Case study I). 

Evaluation metrics 

The validation of the AI perception system was 

quantified using two primary performance metrics: 

1. Gesture Classification Accuracy (ACC ges-

tures). This metric specifically validates the reliabil-

ity of Case study I: Discrete position selection. It 

was measured as the percentage of correctly identi-

fied discrete gestures across a diverse test set. 

2. Detection latency. Reported as the achieved 

Frames Per Second (FPS). Consistent, high through-

sput (30 FPS) is crucial because minimizing the 

perception delay ensures that the overall control 

loop remains responsive enough for smooth, intui-

tive guidance as validated in Case study II. 

Real-time data acquisition from hand tracking 

The Python middleware acts as the central hub, 

continuously acquiring and translating data from the 

AI Perception system. This process is executed at 

approximately 30 FPS. The control strategy imple-

ments a Direct Landmark Differencing approach, 

leveraging the structured output of Media-Pipe to 

ensure low-latency control. The wrist position vec-

tor, Phuman (t), is extracted directly from the Media-

Pipe output, consisting of the normalized x, y, and z 

coordinates of the wrist landmark. The kinematic 

mapping algorithm calculates the required change in 

robot joint angles ΔΘrobot using the proportional con-

trol law based on the change in the raw, filtered 

landmark position:  

Δ θrobot =  k ∗ (P human(t ) – Phuman(t  – 1)). 

This Direct Landmark Differencing method is 

superior as it uses the inherent normalized 3D infor-

mation from Media-Pipe to control the robot along 

the x, y, and z axes simultaneously. The continuous 

control loop is active when the "Open Palm" gesture 

is detected k = 0.15. 

Data transmission to KUKA robot controller 

The calculated commands (either the program 

flag or the ΔΘrobot) are immediately prepared for net-

work transmission to the KRC via the established 

TCP/IP link. The transmission process utilizes the 

specialized client-server architecture: 

– Client encoding: The PyOpenShowVar li-

brary formats the data into the OpenShowVar 

protocol string. 

– TCP/IP transmission: The message is sent 

over the dedicated Ethernet link to the KUKA-

VARPROXY server on the KRC. 

– Server execution: Upon receipt, KUKA-

VARPROXY instantly writes the data to the pre-

defined global KRL variables, enabling the follow-

ing control states: 

• Discrete position select (Case study I): An integer 

variable is updated, causing the main KRL pro-

gram to execute a pre-programmed PTP motion 

to position 1, 2, or 3. 

•  Continuous control (Cases study II): The calcu-

lated ΔΘrobot values are written to variables that 

are continuously read by a loop in the KRL pro-

gram to incrementally adjust the robot's ongoing 

motion every cycle, achieving soft real-time 

guidance. 

• Stop / Pause (Closed Fist): Sets  

ΔΘrobot = 0, 

halting all joint velocity. 

• Teach / Key-frame save (Four fingers): An in-

struction flag is sent to the KRL program to rec-

ord the robot's current joint angles ($AXIS_ACT) 

to a file for offline program generation. 

4. RESULTS AND DISCUSSION 

Results from Case study I: 

 Discrete position selection 

Case study I validated the system's ability to 

reliably translate discrete hand gestures into fixed 

program commands, with the primary metric being 

Gesture Classification Accuracy. The system's 

reliability for programmatic command execution 

was measured across 50 trials for each of the three 

finger-count gestures (1, 2, and 3 fingers up). The 

geometric classifier implemented using Media-Pipe 

landmarks proved highly effective and robust. Table 

1 shows the results from testing data for the hand 

recognition model. 
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T a b l e  1.  

Results from testing data for the hand  

recognition model 

Gesture (target) Number 

of trials 

Correctly 

classified 

Accuracy 

% 

One fingers (Pos 1) 50 49 98 

Two fingers (Pos 2) 50 49 98 

Three fingers (Pos 3) 50 48 96 

Overall 150 146 97.3 

 

The high average accuracy of 97.3% confirms 

the robustness of the geometric thresholding ap-

proach for converting visual input into reliable, 

discrete operational states. 

The total time from the gesture being recog-

nized to the robot initiating its PTP movement was 

measured to assess the pipeline's overall efficiency. 

The 200 ms difference represents the combined 

overhead introduced by the perception system 

(Media-Pipe frame processing) and the Python 

middleware's control logic execution. This estab-

lishes that the system is suitable for non-critical 

programmatic moves but highlights the latency 

component contributed by the soft real-timeAI 

framework. 

Results from Ccase study II:  

Continuous kinesthetic control 

The system successfully achieved a continuous 

control loop rate tied to the perception system's 

throughput of approximately 30 FPS, as shown on 

Table 2. 

T a b l e  2.  

Perception value and implication for control 

Metric Measured 

value 

Implication for control 

Perception 30 FPS Loop cycle time of ∼33 ms 

(ideal minimum latency). 

Proportional 

scaling factor (k) 

0.15 Empirically tuned for safe 

and intuitive joint velocity. 

 

Qualitatively, the robot's motion was per-

ceived as smooth and responsive for slow-to-mod-

erate hand movements, validating the choice of 

k = 0.15. High-frequency hand movements resulted 

in noticeable lag and jerkiness, confirming the limi-

tations inherent in the soft real-time communication 

(TCP/IP) and the KRC's KRL execution cycle. 

The proportional control successfully mapped 

the x and y screen coordinates to the appropriate 

robot joint movements. Crucially, the z-coordinate 

(relative depth) provided by MediaPipe was utilized 

to control axial movement. The result was moving 

the hand closer to the camera (decreasing z) consis-

tently caused the robot's end-effector to move along 

its direction of extension and retraction, enabling 

intuitive forward and backward control. This de-

monstrates the successful exploitation of Media-

Pipe's 3D landmark data for control beyond planar 

movement. 

Discussion of system performance 

The system's overall control rate is constrained 

by the 30 FPS perception throughput and network 

overhead, placing it firmly in the domain of soft 

real-time control. The achieved fidelity allows op-

erators to effectively "teach" spatial points and paths 

by walking the robot through the desired trajectory. 

For kinesthetic teaching, where intuitiveness and 

safety are prioritized over microsecond precision, 

this performance is adequate. 

Acritical consideration for the Direct Land-

mark Differencing approach is the risk of driving 

the manipulator into kinematic singularities. To 

ensure robustness and safety, coding solutions were 

implemented within the KRL program on the KRC: 

1. Maximum delta value limit: The program 

enforced a maximum magnitude on the incremental 

joint commands (ΔΘrobot) received from the PC. 

This prevents excessive acceleration near singulari-

ty zones, capping the maximum velocity command 

for any single axis. 

2. Singularity region detection: The KRL code 

includes logic to monitor the robot's current joint 

configuration. If the robot enters a predefined 

proximity to known singularities (e.g., wrist or 

shoulder singularities), the KRL program automati-

cally reduces the proportional gain (k) to zero or 

switches to a position-hold mode. The external PC 

is then notified with a status message (e.g., "Cannot 

reach this target, possible singularity"). 

The implementation of the Direct Landmark 

Differencing approach proved highly intuitive. 

Operators did not need to perform complex mental 

mapping; a change in the hand's position in space 

directly resulted in a proportional change in the 

robot's joint velocity. This method: 
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1. Eliminated system overhead: By avoiding 

complex inverse kinematics and external OS calls, 

the control was streamlined. 

2. Enabled 3D control: The direct use of 

MediaPipe's coordinate offers a low-cost, effective 

method for controlling the third dimension (depth), 

a significant enhancement over planar 2D vision 

systems. 

The combined results confirm that the low-

cost, vision-based framework is a viable and highly 

accessible alternative for developing natural, kines-

thetic teaching interfaces for industrial manipula-

tors. 

5. CONCLUSIONS AND FUTURE WORK 

This work developed a low-cost, intuitive, and 

soft real-time kinesthetic teaching interface for in-

dustrial manipulators using AI-based vision. The 

system successfully integrated the MediaPipe 

Hands model for gesture-based perception and used 

PyOpenShowVar/KUKAVARPROXY middleware 

for TCP/IP communication with the KUKA KR 16-

2 robot. 

Experimental results confirmed the system’s 

effectiveness: 

High reliability: The gesture classification sys-

tem achieved 97.3% accuracy, demonstrating the 

robustness of the geometric gesture recognition ap-

proach. 

Intuitive 3D control: The Direct Landmark 

Differencing method effectively utilized 3D depth 

data from MediaPipe, enabling natural control of 

depth (Pz axis). 

Precision: During continuous motion, the sys-

tem maintained end-effector accuracy within one 

decimal point of the target, meeting typical indus-

trial tolerances. 

Soft real-time performance: Despite a 200 ms 

overhead from AI processing and TCP/IP commu-

nication, the system proved suitable for non-time-

critical kinesthetic teaching and path recording 

tasks. 

Overall, the proposed framework provides a 

viable and accessible alternative to expensive com-

mercial solutions, showing that consumer-grade vi-

sion systems and open-source middleware can ena-

ble natural, expressive robot programming inter-

faces. 

Building on the success and current limitations 

of the system, several future improvements are pro-

posed: 

– Reduce latency with hard real-time control: 

Migrating from soft real-time TCP/IP to KUKA. 

RSI (Robot Sensor Interface) with UDP communi-

cation could reduce latency and significantly 

improve motion smoothness. 

– Enable Cartesian-space control: Implement-

ing a direct inverse kinematics (IK) solver would 

allow intuitive control of the robot’s end-effector in 

x, y, z space, overcoming the non-linear behavior of 

joint-space control. 

– Incorporate predictive AI models: To miti-

gate perception delays, methods like Kalman filter-

ing or RNNs could predict hand positions a few 

frames ahead, allowing proactive motion and im-

proved responsiveness. 

– Develop a full teaching platform: A graphi-

cal user interface (GUI) could be added to allow 

editing, saving, and replaying taught paths, along 

with features like speed profiles and tool state 

control – transforming the system into an end-to-

end prototyping tool. 

– Enhance safety: Expanding the middle-

ware’s safety logic to include collision prediction 

based on 3D workspace mapping (e.g., using RGB-

D data) would improve operational safety. 

Expand gesture vocabulary: Adding dynamic 

gestures for more complex commands (e.g., grip/re-

lease, speed control, or mode switching) would al-

low operators to execute more advanced tasks with-

out using the physical SmartPAD. 

These directions aim to refine the system into 

a robust, flexible, and user-friendly tool for ad-

vanced human-robot collaboration and intuitive ro-

bot programming. 

REFERENCES 

[1] Sanfilippo, F., Hatledal, L. I., Zhang, H., Fago, M., Pet-

tersen, K. Y. (2015): Controlling Kuka industrial robots: 

Flexible communication interface JOpenShowVar. IEEE 

robotics & automation magazine, 22(4): 96–109. 

[2] Elshatarat, H. L., Baniyounis, M., & Biesenbach, R. (2016, 

March): Design and implementation of a RoBO-2L MAT-

LAB toolbox for a motion control of a robotic manipulator. 

In: 2016 13th International Multi-Conference on Systems, 

Signals & Devices (SSD) (pp. 89–95). IEEE. 

[3] Mehner, M., Matkovic, N., Muehlbeier, E., Mayer, D., 

Fleischer, J., Verl, A. (2023, September): Evaluation of 

external control of KUKA Industrial Robots for laboratory 

and prototype environments. In: ISR Europe 2023; 56th 

International Symposium on Robotics (pp. 278–284). VDE. 

[4] Bilancia, P., Schmidt, J., Raffaeli, R., Peruzzini, M., Pellic-

ciari, M. (2023): An overview of industrial robots control 

and programming approaches. Applied Sciences, 13 (4), 

2582. 



Intelligent control of KUKA robotic systems based on AI-driven human motion tracking 109 

Маш. инж. науч. спис. 43 (2), 101–109 (2025) 

[5] Abdeetedal, M., Kermani, M. R. (2019): An open-source 

integration platform for multiple peripheral modules with 

Kuka robots. CIRP Journal of Manufacturing Science and 

Technology, 27, 46–55. 

[61 Shang-Liang, C., Li-Wu, H. (2021): Using deep learning 

technology to realize the automatic control program of 

robot arm based on hand gesture recognition. International 

Journal of Engineering and Technology Innovation, 11(4), 

241. 

[7} De Smedt, Q. (2017). Dynamic hand gesture recognition-

From traditional handcrafted to recent deep learning 

approaches (Doctoral dissertation, Université de Lille 1, 

Sciences et Technologies; CRIStAL UMR 9189). 

[8] Akgun, B., Cakmak, M., Yoo, J. W., Thomaz, A. L. (2012, 

March): Trajectories and keyframes for kinesthetic teach-

ing: A human-robot interaction perspective. In: Proceedi-

ngs of the seventh annual ACM/IEEE international confer-

ence on Human-Robot Interaction (pp. 391–398). 

[9] Foteinos, K., Cani, J., Linardakis, M., Radoglou-Gram-

matikis, P., Argyriou, V., Sarigiannidis, P., ... & Pa-

padopoulos, G. T. (2025). Visual Hand Gesture Recogni-

tion with Deep Learning: A Comprehensive Review of 

Methods, Datasets, Challenges and Future Research Direc-

tions. arXiv preprint arXiv:2507.04465. 

 

 



 

 


