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A b stract During exploitation, motor vehicles are subjected to vibration loads that lead to fatigue of their
users and materials of their aggregates. Therefore, vibrations must be studied from the earliest stage of development,
using mathematical models, experiments, or their combinations. In theoretical studies, vibrations of concentrated
masses are usually observed, although, with the development of numerical methods (especially finite element method),
attention is paid to vibrations of elastic vehicle systems. Then, idealizations are usually made, especially regarding
operational conditions and relationships between motor vehicle aggregates. In this paper, an attempt was made to de-
velop a method for identifying real vibration loads of elastic vehicle cardan shafts under operational conditions.
Namely, 2D Fourier transformation was used for two-parameter frequency analysis. The possibility of the procedure's
application was demonstrated on an idealized elastic cardan shaft. The research showed that two-parameter frequency
analysis can be used to generate torsional vibrations of elastic vehicle cardan shafts in laboratory conditions.
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IMPUJIOI KOH HCTPAKYBAIBE HA MOKHOCTA 3A KOPUCTEILE AHAJIM3A
HA ®PEKBEHIIMJATA CO IBA ITAPAMETPA 3A EKCIIEPUMEHTAJIHA
NIEHTUOUKAIIMJA HA TAPAMETPUTE HA BPTEXKHUOT MOMEHT
HA KAPJAHCKHUTE OCKH HA BO3NJIOTO

AmcTpakT. 3aBpeMe Ha eKCIUIOaTaljaTa, MOTOPHUTE BO3UIIA CE IIOJI0KEHU Ha BUOPALIMOHY ONTOBapyBarbha
IITO IOBEAyBaaT A0 3aMOP Ha MaTepHjaluTe Ha HUBHUTE arperaTu. 3aToa BUOpaLUUTE MOpa Ja ce NpoydyBaaT yIITe
o HajpaHara (a3a Ha pa3Boj, KOPUCTE]KH MaTEMAaTHYKH MOJICITH, €KCIIEPUMEHTH WIIM HUBHH KoMOuHamu. Bo Teoper-
CKHTE CTYJIMH OOMYHO Ce pasriie/lyBaaT BUOPAIMH HA KOHIEHTPUPAHH MAacH, HaKo, CO Pa3BOjOT HA HYMEPHUKHTE Me-
Toxu (0COOEHO METONOT Ha KOHEYHH ENEMEHTH), UM Ce MOCBETYBa BHHMaHHE W Ha BHOpAlMUTEe HA ENACTHIHHTE
cHcTeMH Ha Bo3uiiata. [10Toa 00MYHO ce MpaBaT HIEaTH3allii, 0COOEHO BO OHOC Ha YCIIOBUTE 3a paboTa 1 OJHOCHTE
Mer'y arperatuTe Ha MOTOPHHUTE Bo3mia. Bo 0Boj Tpy Oeliie HarpaBeH 00K 1a ce pa3BUe METOJ 32 HICHTH(UKYBambe
Ha peaJHuTe BUOPAIIMOHM ONTOBApYyBamba HAa eTaCTHYHUTE KapJaHCKH BPaTHIa Ha BO3HUIOTO IPH PabOTHH YCIOBH.
meHo, 3a aHanu3a Ha (peKBeHIMjaTa co ABa mapamerpa ce kopucreiue 2D Oypueosa Tpanchopmanmja. MoxHocTa
3a IpHUMEHA Ha IOCTanKara Oelle JeMOHCTPHpaHa Ha WIcaIn3MpaHa elacTHYHa OCOBHHA. VICTpakyBameTo MoKaxa
IeKa aHanu3aTa Ha (peKBeHIMjaTa co Ba apamMeTpa MOXKe a e KOPUCTH 3a [a Ce FeHepHpaaT TOP3UOHU BHOpaun
Ha eJIACTHYHHTE BPaTHiIA Ha BO3MIOTO BO JIAOOPATOPHCKH YCIIOBH.

Kny4ynu 360poBH: BO3HIIO; €IACTHYHO BPAaTHIIO; TOP3NOHH BUOpAINY; aHANIN3a Ha (PEKBEHIIM]a CO Ba MapaMeTpa

1. INTRODUCTION vibrations must be studied from the earliest stage of
development, using mathematical models, experi-

During exploitation, motor vehicles are sub- ments, or their combinations.
jected to vibration loads that lead to fatigue of their In theoretical studies, vibrations of concen-

users and materials of their aggregates. Therefore, trated masses are usually observed, although, with
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the development of numerical methods (especially
finite element method), attention is paid to vibra-
tions of elastic vehicle systems. Then, idealizations
are usually made, especially regarding operational
conditions and relationships between vehicle aggre-
gates [1].

The specificity of vehicle operational condi-
tions is their random character [1], which signifi-
cantly complicates theoretical considerations using
models, so experiments are practical and irreplace-
able. Namely, despite significant progress in devel-
oping software for automatic vehicle design and cal-
culation [4], the final judgment on their characteris-
tics is based on experimental research. Therefore,
experimental methods are still significant today.

When it comes to elastic vehicle cardan shafts
subjected to torsional vibrations, a problem often
arises in identifying the parameters of these vibra-
tions. Methods for identifying them are developed,
as is the case with modal analysis [5-10]. In practi-
cal terms, vibration modes are determined in labor-
atory conditions. However, a problem arises in the
case when actual exploitation conditions are neces-
sary to generate the torsional loads of the cardan
shaft on test benches, as the modal analysis does not
provide sufficient opportunities for generating these
signals in the time domain.

Therefore, it was deemed useful to develop a
procedure for identifying the parameters of tor-
sional vibrations of elastic vehicle cardan shafts,
which would enable their generation in laboratory
conditions.

One possibility is frequency analysis using the
Fourier transform, which enables the determination
of the frequency content of signals by calculating
the spectra magnitudes and phase angles [11, 12],
that allow the generation of an original, time-de-
pendent signal using the inverse Fourier transform,
which is routinely performed in cases where the sig-
nal depends only on time [11].

However, vibrations of elastic systems depend
on multiple parameters (dimensions and time), sug-
gesting that a multi-parameter Fourier transform
must be used. In the case of an idealized cardan
shaft (with other types of vibration ignored), tor-
sional vibrations change along the length of the
shaft and depend on time, so the so-called two-pa-
rameter Fourier transformation (2D) must be ap-
plied [13, 14].

This paper will analyze the possibility of using
a two-parameter Fourier transform to create condi-
tions for studying vibrations of elastic vehicle car-
dan shafts in laboratory conditions.

Therefore, a general expression for the Fourier
transform in case of multiple variables will be given
[15]:

F(E1,8s &) = f

R
+ o xnGn) * (g, X e X )d X dxy ¥xxx dxy, (1)

e —2mi(x1{3 + x3,{, +

where:

f (x4, x5....x,) —a function of n variables,
X1,%X2,....X, — Vvariables,

&,é6...... &, — circular frequency, and

- multiple integrals (double for 2D, triple for 3D, etc.).
Rn

2. METHOD

As previously mentioned, this paper aims to
investigate the possibility of using two-parameter
frequency analysis (2D Fourier transformation) in
identifying parameters of torsional vibrations of
elastic vehicle cardan shafts. In the absence of ex-
perimental data on registered torsional vibrations of
the shaft, the method is illustrated with data ob-
tained from a dynamic simulation using its mathe-
matical model. As is known, vibrations of elastic el-
ements are described by partial differential equa-
tions [13,14]. For further consideration, Figure 1
will be observed.
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Fig. 1. The concept of transmission (1 a),
partial scheme of cardan shaft (1 b),
and cardan shaft model (1c)
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Figure 1 shows the concept of transmission of
the observed commercial motor vehicle (1a). Given
that this transmission concept is widely applied in
practice, it has been deemed appropriate not to give
any further explanations. The cardan shaft is in-
tended to transmit the torque from the gearbox to the
drive axle in cases where their axes do not overlap,
as illustrated in Figure (1b). A simplified model of
an elastic cardan shaft is shown in Figure (1c).

When defining the model to describe the tor-
sional vibrations of the elastic cardan shaft, the fol-
lowing assumptions were made:

—the influence of its mass on the occurrence of
transverse vibrations was neglected,

— the shaft was cylindrical (tube) with a
constant outer and inner diameter along its length,

— the shaft was completely dynamically bal-
anced and the influence of clearance in the joints
was neglected, but friction losses in the joints of the
shaft were included.

Given that the partial differential equations
that describe torsion vibrations of elastic bodies,
which also applies to the cardan shaft, is described
in detail in [13, 14], it will not be done here, but its
final form will be given. Given the assumptions
made, forced torsional vibrations of the elastic car-
dan shaft [13,14] are described by the partial differ-
ential equation:

Tt = 2Tt f(x), 2)
where:
u (x, t) — torsional vibrations of the cardan shaft,
X — coordinate along the length of the shaft,

f(x,t) —forced torque originating from unbalanced
motor forces and the random character of
micro-roughness,

t —time, and

where:
G — shear modulus, and
p — density of the shaft material.

As is known [13,14,16], to find the general in-
tegral of the partial differential equation (2), it is
necessary to know the boundary and initial condi-
tions. As is known, the torsional torque caused by
vibrations of the cardan shaft can be expressed [13,
14, 16]:

M = Gl &0, 3)
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where:
lo —a polar moment of inertia given by the ex-
pression for a circular ring cross-section:
- T(R* —1%)
T
where:
R — outer, and
r — inner radius of the cardan shaft tube.

The left boundary condition of the cardan shaft
is defined by the equality of the output torque from
the gearbox and the torsional torque transferred to
it. The right boundary condition of the cardan shaft
is defined by the equality of the torque that needs to
be brought to the drive axle and the torsional torque
of the shaft.

For further consideration, Figure 1b will be ob-
served.

Without delving into the theory of spherical
motion of the universal joint, which is extensively
explained in [17, 18], the vector of the angular ve-
locity of the output shaft of the gearbox is projected
onto the axis of the cardan shaft, and the following
relationship applies:

W, = w1 cos(y)

where y is the angle of the universal joint.

The opposite situation occurs at the right end,
where the following relationship can be written for
the angular velocity of the input shaft of the drive
shaft:

W; = W, cos(y),

where , the angular velocity of the drive shaft.

To define the boundary conditions, it is neces-
sary to calculate the output torque from the gearbox
and the input torque to the drive axle. Based on the
power equality that is transmitted from the gearbox
to the left cross joint of the cardan shaft, we have:

M;w; = M w, = M.w; cos(y). (@)

The same can be written for the right cross
joint of the cardan shaft (where the influence of fric-
tion is included in the joints of the cardan shaft via

the efficiency factor 7, ):

We
2 cos(y)’ (5)

Mewene = Myw, = M

where M is the input torque to the drive axle.
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The torque M, will be calculated from the trac-
tion balance during slow uniform motion of the ob-
served commercial motor vehicle on a road with a
longitudinal slope defined by the longitudinal angle
a . Given the conditions of the observed vehicle
motion, the required moment on the input shaft of
the drive axle M is defined by the expression [19]:

(6)

m cosa+sina)r
M, = ™Y )ra

ioMo

where:
m — the mass of the vehicle,
g - the acceleration due to gravity,
a —the longitudinal slope angle,
f —the coefficient of rolling resistance,
io —the gear reduction in the drive shaft,

n,— the efficiency of the drive axle.

Based on expressions (3), (4), and (6), the
boundary condition for the left end of the cardan
shaft is obtained:

6u(x,t)_i M,
ax  Glycos(y)

()

while based on expressions (3), (5), and (6), the
boundary condition for the right end of the cardan
shaft can be written:

Ju(xt) 1 M
dx  Glpnecos(y)

©)

For the left end of the shaft, x = 0 should be
placed, and for the right end, x = L (where L is the
length of the cardan shaft).

The following initial conditions were assumed
for the dynamic simulation:

du(x,t)

ulx,t) =0 o

=0 9)

fort=0.

It was deemed appropriate to use a forced
torque (excitation function) in partial differential
equation (2) that takes into account the imbalance of
the engine's torque or the random nature of the lon-
gitudinal micro-roughness of the road.

More precisely, in the absence of real data, it
was assumed that the engine torque changes with
twice the frequency of the number of revolutions
(the so-called second harmonic), and that the effect
of longitudinal road roughness can be represented
by a random function [19], i.e.:

f(x,t) = a,, sin(4nnt)
f(x,t) = ap[(rnd — 0.5) + sin(4nnt)]

where:

am —amplitude,

rnd — random numbers uniformly distributed
in the interval 0,1,

n —number of engine revolutions, and

t —time.

The partial differential equation (2), with
boundary and initial conditions (7), (8), and (9), can
be solved only in the case of harmonic excitation
[13, 14], so an attempt was made to solve it using
the Wolfram Mathematica 13.2 program [15]. How-
ever, difficulties arose with listing numerical data,
So it was decided to solve the problem numerically
[20], using the finite difference method. As this pro-
cedure is known from [20], it will not be discussed
here, and the problem was solved using a developed
program in Pascal.

The dynamic simulation was performed for a
steel elastic cardan shaft, using the following data:
m = 22000 kg; io = 7.85; i) = 6.87; rq = 520 mm;
17, = 0.90; 77,= 1; G = 8-104 N/mm? P = 8-10-6
kg/mm?3; R = 125 mm, r = 100 mm; nx = 256; hy =
5 mm; ny= 256; hy=0.01s; an =20 Nm; P =6"°.

As torsional vibrations of the elastic cardan
shaft depend on two parameters, 3D graphics are re-
quired to represent them graphically. For illustra-
tion, the results of the numerical integration of the
partial differential equation (2) are shown for the
used boundary and initial conditions in Figures 2
and 3.
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Fig. 2. Torsional vibrations of the cardan shaft for the forced
torque f(x, t) = am-sin(2nt)
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Fig. 3. Torsional vibrations of _the cardan shaft for the forced Fig. 5. The phase angle of torsional vibrations of the cardan
torque f (x,t) = am[sin(2nt) + (rnd—-0.5)]

shaft for the forced torque f (x,t) = am*sin(2nt)

In Figure 2, harmonic waves along the length
of the shaft can be observed due to the unbalanced
second harmonic of the motor, which is following
the theoretical solutions from [13, 14].

Figure 3 shows the simultaneous effect of the
unbalanced engine torque and road microroughness
on the torsional vibrations of the elastic cardan

shaft, but in this case, randomly-shaped waves ap-
pear.

=
8

Magnitude, rad

Since the torsional vibrations of the elastic car-
dan shaft depend on two parameters (displacement
x and time t), it is necessary to apply 2D Fourier 0%
transformation. To implement it, the author devel-
oped software in Pascal. However, considering the
available commercial software on the market, it was
deemed appropriate to use Origin 8.5 [21] in further

0.1 0.390
. . . Fig. 6. The module spectrum of torsional vibrations
analyses, as potential users will have easier access of the cardan shaft for the forced torque
to that software. f (x,t) = am[sin(2nt) + (rd—0.5)]
Using the mentioned software, the spectra

magnitudes and phases of the two-parameter Fou-
rier transformation were calculated, and, for illus-

tration purposes, the results are shown in Figures 4—
7.
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Fig. 4. The module spectrum of torsional vibrations Fig. 7. The phase angle of torsional vibrations of the cardan
of the cardan shaft for the forced torque
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shaft for the forced torque

f (x,t) = am*sin(2nt) f (x,t) = am[sin(2nt) + (rnd-0.5)]
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3. DATA ANALYSIS

Based on the data analysis shown in images 4-
7, it can be concluded that the spectra magnitude
modules and phase angles describe the wave char-
acter of torsional vibrations of the elastic propeller
shaft, which is consistent with the theoretical solu-
tions from [13, 14].

The waves are more clearly visible in cases of
harmonic disturbance of the form an-sin(2nt), while
in the case of using a disturbance function
am[sin(2nt) + (rnd — 0.5)], the waves are random, as
expected.

Based on previous analyses, it can be claimed
that 2D Fourier transformation reliably enables data
analysis of torsional vibrations of the elastic cardan
shaft, which can have practical applications, as the
inverse Fourier transformation enables laboratory
generation of identical vibrations in operational
conditions [22]. The inverse Fourier transformation
can be realized using the aforementioned software
Origin 8.5 [21].

During operational testing, it is necessary to
register torsional vibration parameters of the elastic
cardan shaft (stress, angular displacement, speed, or
acceleration) along its length, over longer periods.
Minimum and maximum frequency values depend
on the length of the shaft, i.e. length of the time sig-
nal and discretization step.

First, it is necessary to adopt the maximum in-
teresting frequencies fxmax and ftmax, then the set-
ting step of the transducer and sampling of the time
signal is defined based on the equation (Nyquist fre-
guency) [11]:

1 _ 1
t - .
zftmax

2fXmax

X

The minimum interesting frequency is deter-
mined based on the length of the shaft (L = nx-hx)
or the length of the time signal (T = nt-ht), according
to the expressions:

1
fxmin = L ftmin

It should be noted that there are no explicit pro-
cedures for calculating spectral analysis errors for
two-parameter Fourier transforms, unlike in the
case of one-dimensional Fourier transforms [11].
Taking this into account, as well as the fact that this
paper aims to illustrate the possibilities of applying
two-parameter frequency analysis in the study of

torsional vibrations of elastic cardan shafts in vehi-
cles, analysis of statistical errors was not performed
in detail.

The developed procedure has created condi-
tions for analysis of the influence of the integration
step on the accuracy and stability of partial differ-
ential equation (2) solutions, the influence of design
parameters on torsional vibrations of elastic cardan
shafts, the influence of forced torques, and so on.
However, considering that the results of dynamic
simulation in this paper served as a replacement for
missing experimental results, it was evaluated that a
more detailed analysis is not necessary.

4. CONCLUSION

Based on the conducted research, it can be
stated that the two-parameter Fourier transform re-
liably enables the analysis of experimental data on
torsional vibrations of elastic cardan shafts.

The calculated spectra magnitudes and phase
angles, with the application of inverse 2D Fourier,
transform, enable the generation of identical vibra-
tions in the laboratory as well as in exploitation con-
ditions.
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